[1] |
McDonald TJ, Colclough K, Brown R, Shields B, Shepherd M, Bingley P, Williams A, Hattersley AT, Ellard S. Islet autoantibodies can discriminate maturity-onset diabetes of the young (MODY) from type 1 diabetes. Diabet Med, 2011, 28(9): 1028-1033.
doi: 10.1111/dme.2011.28.issue-9
|
[2] |
Hattersley AT, Greeley SAW, Polak M, Rubio-Cabezas O, Njølstad PR, Mlynarski W, Castano L, Carlsson A, Raile K, Chi DV, Ellard S, Craig ME. ISPAD clinical practice consensus guidelines 2018: the diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes, 2018, : 47-63.
|
[3] |
Bonnefond A, Unnikrishnan R, Doria A, Vaxillaire M, Kulkarni RN, Mohan V, Trischitta V, Froguel P. Monogenic diabetes. Nat Rev Dis Primers, 2023, 9(1): 12.
doi: 10.1038/s41572-023-00421-w
pmid: 36894549
|
[4] |
Miyachi Y, Miyazawa T, Ogawa Y. HNF1A mutations and beta cell dysfunction in diabetes. Int J Mol Sci, 2022, 23(6): 3222.
doi: 10.3390/ijms23063222
|
[5] |
Shih DQ, Screenan S, Munoz KN, Philipson L, Pontoglio M, Yaniv M, Polonsky KS, Stoffel M. Loss of HNF-1α function in mice leads to abnormal expression of genes involved in pancreatic islet development and metabolism. Diabetes, 2001, 50(11): 2472-2480.
pmid: 11679424
|
[6] |
Çubuk H, Yalçın Çapan Ö. A review of functional characterization of single amino acid change mutations in HNF transcription factors in MODY pathogenesis. Protein J, 2021, 40(3): 348-360.
doi: 10.1007/s10930-021-09991-8
pmid: 33950347
|
[7] |
Wang XJ, Wang T, Yu M, Zhang HB, Ping F, Zhang Q, Xu JP, Feng K, Xiao XH. Screening of HNF1A and HNF4A mutation and clinical phenotype analysis in a large cohort of Chinese patients with maturity-onset diabetes of the young. Acta Diabetol, 2019, 56(3): 281-288.
doi: 10.1007/s00592-018-1232-x
pmid: 30293189
|
[8] |
Tattersall RB. Mild familial diabetes with dominant inheritance. Q J Med, 1974, 43(170):339-357.
|
[9] |
Sapra A, Bhandari P. Diabetes. StatPearls. Treasure island (FL): StatPearls Publishing, 2023.
|
[10] |
Gillespie KM. Type1 diabetes: pathogenesis and prevention. CMAJ, 2006, 175(2): 165-170.
pmid: 16847277
|
[11] |
Eizirik DL, Pasquali L, Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol, 2020, 16(7): 349-362.
doi: 10.1038/s41574-020-0355-7
pmid: 32398822
|
[12] |
Tosur M, Philipson LH. Precision diabetes: lessons learned from maturity-onset diabetes of the young (MODY). J Diabetes Investig, 2022, 13(9): 1465-1471.
doi: 10.1111/jdi.v13.9
|
[13] |
Aarthy R, Aston-Mourney K, Mikocka-Walus A, Radha V, Amutha A, Anjana RM, Unnikrishnan R, Mohan V. Clinical features, complications and treatment of rarer forms of maturity-onset diabetes of the young (MODY) - a review. J Diabetes Complications, 2021, 35(1): 107640.
doi: 10.1016/j.jdiacomp.2020.107640
|
[14] |
Ge SH, Yang MG, Cui YY, Wu J, Xu LS, Dong JJ, Liao L. The clinical characteristics and gene mutations of maturity-onset diabetes of the yung type 5 in sixty-one patients. Front Endocrinol (Lausanne), 2022, 13: 911526.
doi: 10.3389/fendo.2022.911526
|
[15] |
Firdous P, Nissar K, Ali S, Ganai BA, Shabir U, Hassan T, Masoodi SR. Genetic testing of maturity-onset diabetes of the young current status and future perspectives. Front Endocrinol (Lausanne), 2018, 9: 253.
doi: 10.3389/fendo.2018.00253
|
[16] |
Kind L, Raasakka A, Molnes J, Aukrust I, Bjørkhaug L, Njølstad PR, Kursula P, Arnesen T. Structural and biophysical characterization of transcription factor HNF-1A as a tool to study MODY3 diabetes variants. J Biol Chem, 2022, 298(4): 101803.
doi: 10.1016/j.jbc.2022.101803
|
[17] |
Li LM, Jiang BG, Sun LL. HNF1A:from monogenic diabetes to type 2 diabetes and gestational diabetes mellitus. Front Endocrinol (Lausanne), 2022, 13: 829565.
doi: 10.3389/fendo.2022.829565
|
[18] |
Vaxillaire M, Abderrahmani A, Boutin P, Bailleul B, Froguel P, Yaniv M, Pontoglio M. Anatomy of a homeoprotein revealed by the analysis of human MODY3 mutations. J Biol Chem, 1999, 274(50): 35639-35646.
doi: 10.1074/jbc.274.50.35639
pmid: 10585442
|
[19] |
Sneha P, Kumar DT, Doss CGP, Siva R, Hatem Z, Chandra V. Determining the role of missense mutations in the pou domain of HNF1A that reduce the DNA-binding affinity: a computational approach. PLoS One, 2017, 12(4): e0174953.
doi: 10.1371/journal.pone.0174953
|
[20] |
Malikova J, Kaci A, Dusatkova P, Aukrust I, Torsvik J, Vesela K, Kankova PD, Njølstad PR, Pruhova S, Bjørkhaug L. Functional analyses of HNF1A-MODY variants refine the interpretation of identified sequence variants. J Clin Endocrinol Metab, 2020, 105(4): dgaa051.
|
[21] |
Haliyur R, Tong X, Sanyoura M, Shrestha S, Lindner J, Saunders DC, Aramandla R, Poffenberger G, Redick SD, Bottino R, Prasad N, Levy SE, Blind RD, Harlan DM, Philipson LH, Stein RW, Brissova M, Powers AC. Human islets expressing HNF1A variant have defective β cell transcriptional regulatory networks. J Clin Invest, 2019, 129(1): 246-251.
doi: 10.1172/JCI121994
pmid: 30507613
|
[22] |
Haque E, Teeli AS, Winiarczyk D, Taguchi M, Sakuraba S, Kono H, Leszczyński P, Pierzchała M, Taniguchi H. HNF1A pou domain mutations found in Japanese liver cancer patients cause downregulation of HNF4A promoter activity with possible disruption in transcription networks. Genes (Basel), 2022, 13(3): 413.
doi: 10.3390/genes13030413
|