遗传 ›› 2014, Vol. 36 ›› Issue (11): 1131-1144.doi: 10.3724/SP.J.1005.2014.1131
刘亚兰1, 2, 3, 张华4, 冯永1, 2, 3
收稿日期:
2014-06-26
出版日期:
2014-11-20
发布日期:
2014-10-28
通讯作者:
冯永,博士,教授,一级主任医师,研究方向:耳聋的临床及遗传学。E-mail: fengyong_hn@hotmail.com
E-mail:a_lan123@163.com
作者简介:
刘亚兰,博士,助理研究员,研究方向:分子遗传学研究。
基金资助:
Yalan Liu1, 2, 3, Hua Zhang4, Yong Feng1, 2, 3
Received:
2014-06-26
Online:
2014-11-20
Published:
2014-10-28
摘要: 综合征型耳聋(Syndromic hearing loss, SHL)现已报道400多种,大多数发病率低,临床常见的有Waardenburg综合征(WS)、先天性小耳畸形综合征、前庭导水管扩大综合征等。因SHL具有极强的临床和遗传异质性,所以对其遗传基础及发病机制的研究变得十分困难。以SOX10和PAX3为中心的基因作用网络引起的神经嵴细胞功能异常与WS、小耳畸形及前庭导水管扩大等表型相关。本课题组前期研究也证实该基因网络参与WS的发病机制。文章针对神经嵴发育异常导致相关综合征型耳聋的发病机制的研究进展进行了系统的阐述,分析并归纳了与综合征型耳聋发病相关的神经嵴发育异常基因互作网络,以期为系统地研究常见综合征型耳聋致病基因的定位克隆以及发病机制提供研究思路和理论基础。
刘亚兰, 张华, 冯永. 神经嵴发育异常导致综合征型耳聋的机制[J]. 遗传, 2014, 36(11): 1131-1144.
Yalan Liu, Hua Zhang, Yong Feng. Progress in the study of syndromic hearing loss resulted from neural crest abnormalities[J]. HEREDITAS(Beijing), 2014, 36(11): 1131-1144.
[1] Camp G, Willems PJ, Smith RJ. Nonsyndromic hearing impairment: unparalleled heterogeneity. Am J Hum Genet , 1997, 60(4): 758–764. [2] I, Gardner P. Hereditary sensorineural hearing loss: advances in molecular genetics and mutation analysis. Expert Rev Mol Diagn , 2006, 6(3): 375–386. [3] Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development , 2000, 127(8): 1671–1679. [4] ML, Bronner-Fraser M. Neural crest inducing signals. Adv Exp Med Biol , 2006, 589: 24–31. [5] RP. Neurocristopathy: its growth and development in 20 years. Pediatr Pathol Lab Med , 1997, 17(1): 1–25. [6] PJ. A new syndrome combining developmental anomalies of the eyelids, eyebrows and nose root with pigmentary defects of the iris and head hair and with congenital deafness. Am J Hum Genet , 1951, 3(3): 195–253. [7] LA, Grundfast KM, Amos J, Arnos KS, Asher JH Jr, Beighton P, Diehl SR, Fex J, Foy C, Friedman TB, Greenberg J, Hoth C, Marazita M, Milunsky A, Morell R, Nance W, Newton V, Ramesar R, Agustin TB, Skare J, Stevens CA,Wagner RG, Wilcox ER, Winship I, Read AP. Waardenburg syndrome (WS) type I is caused by defects at multiple loci, one of which is near ALPP on chromosome 2: first report of the WS consortium. Am J Hum Genet , 1992, 50(5): 902–913. [8] WB, Stone VM, Boder E, Ziprkowski L. Pigmentary disorders in association with congenital deafness. Arch Dermatol , 1967, 95(2): 176–186. [9] CA, Nakayama A, Li H, Swenson LB, Opdecamp K, Asher JH Jr, Arnheiter H, Glaser T. Mutation at the anophthalmic white locus in Syrian hamsters: haploinsufficiency in the Mitf gene mimics human Waardenburg syndrome type 2. Hum Mol Genet , 1998, 7(4): 703–708. [10] AP, Newton VE. Waardenburg syndrome. J Med Genet , 1997, 34(8): 656–665. [11] S. Genetic heterogeneity in the Waardenburg syndrome. Birth Defects Orig Artic Ser , 1971, 7(4): 87–101. [12] MJ, Delleman JW. Heterogeneity in Waardenburg syndrome. Am J Hum Genet , 1977, 29(5): 468–485. [13] LA, Arnos KS, Asher JH Jr, Baldwin CT, Diehl SR, Friedman TB, Greenberg J, Grundfast KM, Hoth C, Lalwani AK, Landa B, Leverton K, Milunsky A, Morell R, Nance WE, Newton V, Ramesar R, Rao VS, Reynolds JE, Agustin TBS, Wilcox ER, Winship I, Read AP. Locus heterogeneity for Waardenburg syndrome is predictive of clinical subtypes. Am J Hum Genet , 1994, 55(4): 728–737. [14] XZ, Newton VE, Read AP. Waardenburg syndrome type II: phenotypic findings and diagnostic criteria. Am J Med Genet , 1995, 55(1): 95–100. [15] R, Pavan WJ. The importance of having your SOX on: role of SOX10 in the development of neural crest-derived melanocytes and glia. Oncogene , 2003, 22(20): 3024–3034. [16] LL, Hou L, Loftus SK, Pavan WJ. Spotlight on spotted mice: a review of white spotting mouse mutants and associated human pigmentation disorders. Pigment Cell Res , 2004, 17(3): 215–224. [17] RA, Chiang PW, Oiso N, Alkhateeb A. Human and mouse disorders of pigmentation. Curr Opin Genet Dev , 2003, 13(3): 284–289. [18] V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S, Bondurand N. Review and update of mutations causing Waardenburg syndrome. Hum Mutat , 2010, 31(4): 391–406. [19] JF, Trainor PA. Neural crest stem and progenitor cells. Annu Rev Cell Dev Biol , 2006, 22: 267–286. [20] E, Le Douarin NM. Development of melanocyte precursors from the vertebrate neural crest. Oncogene , 2003, 22(20): 3016–3023. [21] T, Bronner-Fraser M. Development and evolution of the migratory neural crest: a gene regulatory perspective. Curr Opin Genet Dev , 2006, 16(4): 360–366. [22] FC, Kos L. Timeline and distribution of melanocyte precursors in the mouse heart. Pigment Cell Melanoma Res , 2008, 21(4): 464–470. [23] E, Copeland NG, Jenkins NA. Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet , 2004, 38: 365–411. [24] I, Larue L. The location of heart melanocytes is specified and the level of pigmentation in the heart may correlate with coat color. Pigment Cell Melanoma Res , 2008, 21(4): 471–476. [25] M, Read AP, Newton VE, Harris R, Balling R, Gruss P, Strachan T. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature , 1992, 355(6361): 635–636. [26] CF, Milunsky A, Lipsky N, Sheffer R, Clarren SK, Baldwin CT. Mutations in the paired domain of the human PAX3 gene cause Klein-Waardenburg syndrome (WS-III) as well as Waardenburg syndrome type I (WS-I). Am J Hum Genet , 1993, 52(3): 455–462. [27] M, Newton VE, Read AP. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia ( MITF ) gene. Nat Genet , 1994, 8(3): 251–255. [28] M, Rodríguez-García A, Pérez-Losada J, Sagrera A, Read AP, Sánchez-García I. SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol Genet , 2002, 11(25): 3231–3236. [29] N, Dastot-Le Moal F, Stanchina L, Collot N, Baral V, Marlin S, Attie-Bitach T, Giurgea I, Skopinski L, Reardon W, Toutain A, Sarda P, Echaieb A, Lackmy-Port-Lis M, Touraine R, Amiel J, Goossens M, Pingault V. Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4. Am J Hum Genet , 2007, 81(6): 1169–1185. [30] M, Fukami M, Horikawa R, Azuma N, Kawashiro N, Ogata T. SOX10 mutation in Waardenburg syndrome type II. Am J Med Genet A , 2008, 146A(16): 2162–2163. [31] P, Attie T, Amiel J, Pelet A, Eng C, Hofstra RM, Martelli H, Bidaud C, Munnich A, Lyonnet S. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet , 1996, 12(4): 442–444. [32] EG, Hosoda K, Washington SS, Nakao K, deWit D, Yanagisawa M, Chakravarti A. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease. Cell , 1994, 79(7): 1257– 1266. [33] V, Bondurand N, Kuhlbrodt K, Goerich DE, Préhu MO, Puliti A, Herbarth B, Hermans-Borgmeyer I, Legius E, Matthijs G, Amiel J, Lyonnet S, Ceccherini I, Romeo G, Smith JC, Read AP, Wegner M, Goossens M. SOX10 mutations in patients with Waardenburg-Hirsch-sprung disease. Nat Genet , 1998, 18(2): 171–173. [34] L, Chen HS, Jiang W, Hu ZM, Mei LY, Xue JJ, He CF, Liu YL, Xia K, Feng Y. Novel mutations in the SOX10 gene in the first two Chinese cases of type IV Waardenburg syndrome. Biochem Biophys Res Commun , 2011, 408(4): 620–624. [35] SZ, Cao JY, Zhang RN, Liu LX, Liu X, Zhang X, Kang DY, Li M, Han DY, Yuan HJ, Yang WY. Nonsense mutations in the PAX3 gene cause Waardenburg syndrome type I in two Chinese patients. Chin Med J (Engl) , 2007, 120(1): 46–49. [36] W, Shu A, Qian X, Gao J, Xing Q, Zhang J, Zheng Y, Li X, Li S, Feng G, He L. A novel mutation of PAX3 in a Chinese family with Waardenburg syndrome. Mol Vis , 2006, 12: 1001–1008. [37] T, Hashimoto K, Bawle EV. Spontaneous contraction of leukodermic patches in Waardenburg syndrome. J Dermatol , 1993, 20(11): 707–711. [38] AJ. Waardenburg syndrome type II in a Taiwanese woman with a family history of pseudoxanthoma elasticum. Int J Dermatol , 1997, 36(12): 933–935. [39] J, Li SQ, Xiao XS, Wang PF, Guo XM, Zhang QJ. PAX3 mutations and clinical characteristics in Chinese patients with Waardenburg syndrome type 1. Mol Vis , 2010, 16: 1146–1153. [40] HS, Jiang L, Xie ZG, Mei LY, He CF, Hu ZM, Xia K, Feng Y. Novel mutations of PAX3, MITF, and SOX10 genes in Chinese patients with type I or type II Waardenburg syndrome. Biochem Biophys Res Commun , 2010, 397(1): 70–74. [41] J, Yang SZ, Liu J, Han B, Wang GJ, Zhang X, Kang DY, Dai P, Young WY, Yuan HJ. Mutation screening of MITF gene in patients with Waardenburg syndrome type 2. Hereditas , 2008, 30(4): 433–438. [42] M, Kobayashi Y, Matsushima Y. Mouse models for four types of Waardenburg syndrome. Pigment Cell Res , 2003, 16(5): 448–454. [43] DV, Heike CL, Hing AV, Cunningham ML, Cox TC. Microtia: epidemiology and genetics. Am J Med Genet A , 2012, 158A(1): 124–139. [44] F, Van Camp G. Genetics of microtia and associated syndromes. J Med Genet , 2009, 46(6): 361–369. [45] MA, Langlois PH, Nguyen LM, Scheuerle AE. Epidemiologic features and clinical subgroups of anotia/microtia in Texas. Birth Defects Res A Clin Mol Teratol , 2009, 85(11): 905–913. [46] S, Rautio J, Ritvanen A, Ala-Mello S, Jero J, Klockars T. Microtia in Finland: comparison of characteristics in different populations. Int J Pediatr Otorhinolaryngol , 2007, 71(8): 1211–1217. [47] MB, Merz RD. Descriptive epidemiology of anotia and microtia, Hawaii, 1986–2002. Congenit Anom (Kyoto) , 2005, 45(4): 119–124. [48] GM, Carmichael SL, Kaidarova Z, Harris JA. Epidemiologic characteristics of anotia and microtia in California, 1989–1997. Birth Defects Res A Clin Mol Teratol , 2004, 70(7): 472–475. [49] J, Källén B, Robert E. The epidemiology of anotia and microtia. J Med Genet , 1996, 33(10): 809–813. [50] 王艳萍, 梁娟, 周光萱. 1988~1992年全国先天性无耳和小耳畸形发病率的抽样调查. 中华耳鼻咽喉科杂志, 2000, 35(1): 62–65. [51] 先天性小耳畸形在家族中发病聚集报道(附2个家族4例报告). 江西医药, 2008, 43(7): 708–709. [52] PA. Specification of neural crest cell formation and migration in mouse embryos. Semin Cell Dev Biol , 2005, 16(6): 683–693. [53] 王旭东, 代杰文, 孙昊, 沈国芳. 颅神经嵴细胞的迁移及特性. 中华口腔医学研究杂志: 电子版, 2011, 5(6): 652–657. [54] GC, Bleyl SB, Brauer PR, Francis-West PH. Development of the ears and eyes. Larsen’s human embryology (4th ed.), New York: Churchill Livingstone, 2009. [55] 潘博, 于晓波, 刘磊, 赵延勇, 林琳, 庄洪兴, 蒋海越. 小耳畸形的“二期法”耳廓再造术. 组织工程与重建外科杂志, 2010, 6(5): 276–278. [56] H, Chen HS, Luo HJ, An J, Sun L, Mei LY, He CF, Jiang L, Jiang W, Xia K, Li JD, Feng Y. Functional analysis of Waardenburg syndrome-associated PAX3 and SOX10 mutations: report of a dominant-negative SOX10 mutation in Waardenburg syndrome type II. Hum Genet , 2012, 131(3): 491–503. [57] H, Luo HJ, Chen HS, Mei LY, He CF, Jiang L, Li JD, Feng Y. Functional analysis of MITF gene mutations associated with Waardenburg syndrome type 2. FEBS Lett , 2012, 586(23): 4126–4131. [58] L. Generation of melanocytes from neural crest cells. Pigment Cell Melanoma Res , 2011, 24(3): 411–421. [59] D, Epstein JA. Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Hum Mol Genet , 2003, 12(8): 937–945. [60] D, Chen F, Milewski R, Li J, Lu MM, Epstein JA. Pax3 is required for enteric ganglia formation and functions with Sox10 to modulate expression of c-ret. J Clin Invest , 2000, 106(8): 963–971. [61] MR, He S, Ahn A, Slobbe LJ, Jeffs AR, Yoon HS, Baguley BC. MITF and PAX3 play distinct roles in melanoma cell migration; outline of a "Genetic Switch" theory involving MITF and PAX3 in proliferative and invasive phenotypes of melanoma. Front Oncol , 2013, 3: 229. [62] B, Tukel T, Uyguner O, Ghanbari A, Kayserili H, Emiroglu M, Yuksel-Apak M. Homozygous and heterozygous inheritance of PAX3 mutations causes different types of Waardenburg syndrome. Am J Med Genet A , 2003, 122A(1): 42–45. [63] A, Laurino M, Maravilla KR, Matsushita M, Raskind WH. Sensorineural deafness, distinctive facial features, and abnormal cranial bones: a new variant of Waardenburg syndrome? Am J Med Genet A , 2008, 146A(14): 1880–1885. [64] P, Kessel M, Gruss P. A transgenic neuroanatomical marker identifies cranial neural crest deficiencies associated with the Pax3 mutant Splotch. Dev Biol , 1995, 171(2): 317–329. [65] M, Li J, Engleka KA, Zhou B, Lu MM, Plotkin JB, Epstein JA. Persistent expression of Pax3 in the neural crest causes cleft palate and defective osteogenesis in mice. J Clin Invest , 2008, 118(6): 2076–2087. [66] JD, Young KP, Plummer RS, Ludvik AE, Lang D. Pigmentation PAX-ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease. Pigment Cell Melanoma Res , 2008, 21(6): 627–645. [67] BT, Fotaki V, Mason JO. Pax3 regulates Wnt1 expression via a conserved binding site in the 5' proximal promoter. Biochim Biophys Acta , 2008, 1779(2): 115–121. [68] CS, Pool A, Nakazaki H, Reddy AC, Mania-Farnell B, Yun B, George D, McLone DG, Bremer EG. Regulation of murine TGFbeta2 by Pax3 during early embryonic development. J Biol Chem , 2006, 281(34): 24544–24552. [69] F, Griseri P, Fanelli M, Schena F, Romeo G, Pelicci P, Ceccherini I, Ravazzolo R, Patrone G. Cell- line specific chromatin acetylation at the Sox10-Pax3 enhancer site modulates the RET proto-oncogene expression. FEBS Lett , 2002, 523(1–3): 123–127. [70] SJ, Bundy J, Chen J, Dickman E, Rogers R, Will BM. Decreased neural crest stem cell expansion is responsible for the conotruncal heart defects within the splotch (Sp(2H))/Pax3 mouse mutant. Cardiovasc Res , 2000, 47(2): 314–328. [71] SC, Relaix F, Sandell LL, Loeken MR. Oxidative stress during diabetic pregnancy disrupts cardiac neural crest migration and causes outflow tract defects. Birth Defects Res A Clin Mol Teratol , 2008, 82(6): 453–463. [72] T, Tsuji Y, Hibino T. Involvement of transforming growth factor-beta2 in catagen induction during the human hair cycle. J Invest Dermatol , 2002, 118(6): 993–997. [73] LA, Bronner-Fraser M. Dynamic alterations in gene expression after Wnt-mediated induction of avian neural crest. Mol Biol Cell , 2005, 16(11): 5283– 5293. [74] S, Cossais F, Fischer K, Scholz S, Bösl MR, Holtmann B, Sendtner M, Wegner M. Hypomorphic Sox10 alleles reveal novel protein functions and unravel developmental differences in glial lineages. Development , 2007, 134(18): 3271–3281. [75] S, Kosian T, Wolf M, Finzsch M, Wegner M. The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors. Nucleic Acids Res , 2006, 34(6): 1735–1744. [76] V, Guiochon-Mantel A, Bondurand N, Faure C, Lacroix C, Lyonnet S, Goossens M, Landrieu P. Peripheral neuropathy with hypomyelination, chronic intestinal pseudo-obstruction and deafness: a developmental "neural crest syndrome" related to a SOX10 mutation. Ann Neurol , 2000, 48(4): 671–676. [77] A, Watanabe Y, Fernández RM, López-Alonso M, Antiñolo G, Bondurand N, Borrego S. Involvement of SOX10 in the pathogenesis of Hirschsprung disease: report of a truncating mutation in an isolated patient. J Mol Med ( Berl ), 2010, 88(5): 507–514. [78] N, Kuhlbrodt K, Pingault V, Enderich J, Sajus M, Tommerup N, Warburg M, Hennekam RC, Read AP, Wegner M, Goossens M. A molecular analysis of the yemenite deaf-blind hypopigmentation syndrome: SOX10 dysfunction causes different neurocristopathies. Hum Mol Genet , 1999, 8(9): 1785–1789. [79] ML, Baxter LL, Loftus SK, Pavan WJ. Sox proteins in melanocyte development and melanoma. Pigment Cell Melanoma Res , 2010, 23(4): 496–513. [80] M, Reiprich S, Vogl MR, Bösl MR, Wegner M. Transcription factor Sox10 orchestrates activity of a neural crest-specific enhancer in the vicinity of its gene. Nucleic Acids Res , 2012, 40(1): 88–101. [81] EM, Kos L, Pavan WJ. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet , 1998, 18(1): 60–64. [82] K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M. Sox10, a novel transcriptional modulator in glial cells. J Neurosci , 1998, 18(1): 237–250. [83] I, Bodson M, Thelen N, Thiry M, Borgs L, Nguyen L, Lefebvre PP, Malgrange B. Sox10 promotes the survival of cochlear progenitors during the establishment of the organ of Corti. Dev Biol , 2009, 335(2): 327–339. [84] K, Takeda K, Katori Y, Ikeda K, Oshima T, Yasumoto K, Saito H, Takasaka T, Shibahara S. Expression of the Sox10 gene during mouse inner ear development. Brain Res Mol Brain Res , 2000, 84(1–2): 141–145. [85] V, Girard M, Bondurand N, Dorkins H, Van Maldergem L, Mowat D, Shimotake T, Verma I, Baumann C, Goossens M. SOX10 mutations in chronic intestinal pseudo-obstruction suggest a complex phy-siopathological mechanism. Hum Genet , 2002, 111(2): 198–206. [86] CP, Mendoza-Londono R, Blaser S, Gillis J, Dupuis L, Levin AV, Chiang PW, Spector E, Reardon W. Aplasia of cochlear nerves and olfactory bulbs in association with SOX10 mutation. Am J Med Genet A , 2009, 149A(3): 431–436. [87] YY, Reiprich S, Wegner M, Fritzsch B. Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear. PLoS ONE , 2014, 9(4): e94580. [88] M, Miliński M, Buszman E, Wrześniok D, Beberok A. Hereditary hypomelanocytoses: the role of PAX3, SOX10, MITF, SNAI2, KIT, EDN3 and EDNRB genes. Postepy Hig Med Dosw ( Online ), 2013, 67: 1109–1118. [89] E, Liu Y, Kjaeldgaard A, Sundstrom E, García-Castro MI. Analysis of early human neural crest development. Dev Biol , 2010, 344(2): 578–592. [90] Y, Ohanna M, Ballotti R, Bertolotto C. Fifteen-year quest for microphthalmia-associated transcri-ption factor target genes. Pigment Cell Melanoma Res , 2010, 23(1): 27–40. [91] L, Pavan WJ. Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf? Cell Res , 2008, 18(12): 1163–1176. [92] L, Panthier JJ, Arnheiter H. Signaling and transcriptional regulation in the neural crest-derived mela-nocyte lineage: interactions between KIT and MITF. Development , 2000, 127(24): 5379–5389. [93] P, Hu Y, He L. Regulation of melanocyte pivotal transcription factor MITF by some other transcription factors. Mol Cell Biochem , 2011, 354(1–2): 241–246. [94] N, Pingault V, Goerich DE, Lemort N, Sock E, Le Caignec C, Wegner M, Goossens M. Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet , 2000, 9(13): 1907–1917. [95] A, Rehberg S, Wegner M. Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. FEBS Lett , 2004, 556(1–3): 236–244. [96] L, Arnheiter H, Pavan WJ. Interspecies difference in the regulation of melanocyte development by SOX10 and MITF. Proc Natl Acad Sci USA , 2006, 103(24): 9081–9085. [97] L, Lee HO, Jordan CS, Cantrell VA, Southard- Smith EM, Shin MK. Spatiotemporal regulation of endothelin receptor-B by SOX10 in neural crest-derived enteric neuron precursors. Nat Genet , 2004, 36(7): 732– 737. [98] K, Nishimura EK, Akasaka E, Huber W, Nakano H, Miller A, Du J, Wu M, Hanada K, Sawamura D, Fisher DE, Imokawa G. Epistatic connections between microphthalmia-associated transcription factor and endothelin signaling in Waardenburg syndrome and other pigmentary disorders. FASEB J , 2008, 22(4): 1155–1168. [99] A, Digilio MC, Dallapiccola B. Leopard syndrome. Orphanet J Rare Dis , 2008, 3: 13. [100] U, Gehring NH, Fuchs KP, Sachs M, Kempkes B, Birchmeier W. Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J Cell Biol , 2000, 149(7): 1419–1432. [101] JB, Littlejohn EL, Wolsky RJ, Young KP, Nelson M, Salgia R, Lang D. PAX3 and SOX10 activate MET receptor expression in melanoma. Pigment Cell Melanoma Res , 2010, 23(2): 225–237. [102] L, Flori E, Denoyelle C, Bille K, Busca R, Picardo M, Bertolotto C, Ballotti R. Up-regulation of MET expression by α-melanocyte-stimulating hormone and MITF allows hepatocyte growth factor to protect melanocytes and melanoma cells from apoptosis. J Biol Chem , 2007, 282(19): 14140–14147. [103] A, Carta C, Moretti S, Zampino G, Digilio MC, Pantaleoni F, Scioletti AP, Esposito G, Cordeddu V, Lepri F, Petrangeli V, Dentici ML, Mancini GM, Selicorni A, Rossi C, Mazzanti L, Marino B, Ferrero GB, Silengo MC, Memo L, Stanzial F, Faravelli F, Stuppia L, Puxeddu E, Gelb BD, Dallapiccola B, Tartaglia M. Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: molecular diversity and associated phenotypic spectrum. Hum Mutat , 2009, 30(4): 695–702. [104] FC, Sproule JR, Halal F. Frequency of the branchio-oto-renal (BOR) syndrome in children with profound hearing loss. Am J Med Genet , 1980, 7(3): 341–349. [105] ML, Bermejo Sánchez E, Arroyo Carrera I, Pérez Fernández JL, Pardo Romero M, Burón Martínez E, Hernández Ramón F. The Townes-Brocks syndrome in Spain: the epidemiological aspects in a consecutive series of cases. An Esp Pediatr , 1999, 50(1): 57–60. [106] EH, Menezes M, Meyer NC, Cucci RA, Vervoort VS, Schwartz CE, Smith RJH. Branchio-oto-renal syndrome: the mutation spectrum in EYA1 and its phenotypic consequences. Hum Mutat , 2004, 23(6): 582–589. [107] J, Wischermann A, Reichenbach H, Froster U, Engel W. Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat Genet , 1998, 18(1): 81–83. [108] EY, Ahmed M, Xu PX. EYA1-SIX1 complex in neurosensory cell fate induction in the mammalian inner ear. Hear Res , 2013, 297: 13–19. [109] S, Englert C. Genetic determination of nephrogenesis: the Pax/Eya/Six gene network. Pediatr Nephrol , 2004, 19(3): 249–255. [110] F, Sadeghi A, Sanati MH, Farhadi M, Stollar E, Somers T, Van Camp G. A mutation in HOXA2 is responsible for autosomal-recessive microtia in an Iranian family. Am J Hum Genet , 2008, 82(4): 982–991. [111] G, Belting HG, Wolke U, Lunde K, Söll I, Abdelilah-Seyfried S, Prince V, Driever W. Spiel ohne grenzen/pou2 is required for zebrafish hindbrain segmentation. Development , 2002, 129(7): 1645–1655. [112] V, Gaudenzi G, Sangiorgio L, Cotelli F, Giavini E. Krox20 is down-regulated following triazole in vitro embryonic exposure: a polycompetitor-based assay. Toxicol Lett , 2007, 169(3): 196–204. [113] S, Kriesch J, Schreiner S, Wegner M. Activation of Krox20 gene expression by Sox10 in myelinating Schwann cells. J Neurochem , 2010, 112(3): 744–754. [114] F, Charnay P. Hindbrain patterning: FGFs regulate Krox20 and mafB/kr expression in the otic/preotic region. Development , 2000, 127(22): 4925–4935. [115] K, Kayam G, Missulawin-Drillman T, Sela-Donenfeld D. Analysis of expression and function of FGF-MAPK signaling components in the hindbrain reveals a central role for FGF3 in the regulation of Krox20, mediated by Pea3. Dev Biol , 2010, 344(2): 881–895. [116] C, Halsted MJ, Hopkin RJ, Choo DI, Benton C, Greinwald JH Jr. Temporal bone abnormalities associated with hearing loss in Waardenburg syndrome. Laryngoscope , 2003, 113(11): 2035–2041. [117] M, Baumann C, Noël-Pétroff N, Sekkal A, Couloigner V, Devriendt K, Wilson M, Marlin S, Sebag G, Pingault V. Spectrum of temporal bone abnormalities in patients with Waardenburg syndrome and SOX10 mutations. AJNR Am J Neuroradiol , 2013, 34(6): 1257–1263. [118] C, Standaert L, Casselman JW, Huygen PL, Kumar S, Van de Wallen J, Cremers CW. The presence of a widened vestibular aqueduct and progressive sensorineural hearing loss in the branchio-oto-renal syndrome. A family study. Int J Pediatr Otorhinolaryngol , 2001, 59(3): 163–172. [119] MH, Stinckens C, Kumar S, Huygen PL, Joosten FB, Cremers CW. Progressive fluctuant hearing loss, enlarged vestibular aqueduct, and cochlear hypoplasia in branchio-oto-renal syndrome. Otol Neurotol , 2001, 22(5): 637–643. [120] EJ, Blaser S, Gordon KA, Harrison RV, Papsin BC. Temporal bone findings on computed tomography imaging in branchio-oto-renal syndrome. Laryngoscope , 2005, 115(10): 1855–1862. [121] T, Noguchi Y, Yashima T, Kitamura K. SIX1 mutation associated with enlargement of the vestibular aqueduct in a patient with branchio-oto syndrome. Laryngoscope , 2006, 116(5): 796–799. |
[1] | 孙兆庆, 闫波. 转录因子GATA6在心血管疾病中的作用及其调控机制[J]. 遗传, 2019, 41(5): 375-383. |
[2] | 徐福如, 蒋文君, 张涛, 姜倩, 张瑞雪, 毕宏生. FBN2基因突变与遗传性结缔组织病的发生[J]. 遗传, 2019, 41(10): 919-927. |
[3] | 严婷婷, 张蕾, 李余动, 梁新乐. 基于微信的“微生物遗传育种实验”混合式教学模式探究[J]. 遗传, 2018, 40(7): 601-606. |
[4] | 刘玉庆, 朱雄, 李姝锦, 杨业明, 杨牧, 赵培泉, 朱献军. 家族性渗出性玻璃体视网膜病变患者LRP5基因突变研究[J]. 遗传, 2017, 39(3): 241-249. |
[5] | 邹永新,龚瑶琴. 影响RNA剪接的基因变异[J]. 遗传, 2017, 39(3): 200-207. |
[6] | 范智权,孙加雷,单建伟,杨江义. 杂种偏分离的遗传和分子机理研究进展[J]. 遗传, 2015, 37(2): 148-156. |
[7] | 孙帅, 邓宇亮. 肺癌循环肿瘤细胞的单细胞EGFR基因突变检测[J]. 遗传, 2015, 37(12): 1251-1257. |
[8] | 栾奕昭 左晓宇 刘轲 李谷 饶绍奇. 基于单核苷酸多态性的基因互作分析方法学进展[J]. 遗传, 2013, 35(12): 1331-1339. |
[9] | 何轶群 许美芬 于涵 耿军伟 施苏雪 薛凌 卢中秋 管敏鑫. 血脂异常遗传性疾病的研究现状[J]. 遗传, 2013, 35(11): 1237-1243. |
[10] | 彭光华,郑斌娇,方芳,伍越,梁玲芝,郑静,南奔宇,余啸,唐霄雯,朱翌,吕建新,陈波蓓,管敏鑫. 25个携带线粒体12S rRNA A1555G突变的中国汉族非综合征型耳聋家系[J]. 遗传, 2013, 35(1): 62-72. |
[11] | 郑斌娇,彭光华,陈波蓓,方芳,郑静,伍越,梁玲芝,南奔宇,唐霄雯,朱翌,吕建新,管敏鑫. 浙江省非综合征型耳聋患者12S rRNA突变频谱分析[J]. 遗传, 2012, 34(6): 695-704. |
[12] | 李宗斌,刘昱圻,李彦华,陈瑞,王琳,朱庆磊,李泱,王士雯. 中国汉族原发性高血压患者线粒体tRNA基因突变[J]. 遗传, 2011, 33(6): 601-606. |
[13] | 代艳芳,孙立元,张新波,王绿娅. 中国人群家族性高胆固醇血症LDLR基因突变研究进展[J]. 遗传, 2011, 33(1): 1-8. |
[14] | 张如旭,郭鹏,任志军,赵国华,刘三妹,刘婷,资晓宏,胡正茂,夏昆,唐北沙. LITAF、RAB7、LMNA和MTMR2基因在中国人腓骨肌萎缩症患者的突变分析[J]. 遗传, 2010, 32(8): 817-823. |
[15] | 雷徐,高晓彩,张富昌. X连锁精神发育迟滞相关基因JARID1C研究进展[J]. 遗传, 2010, 32(3): 205-210. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: