遗传 ›› 2024, Vol. 46 ›› Issue (12): 1055-1065.doi: 10.16288/j.yczz.24-230
陈瑶(), 温馨, 袁芳媛, 彭钞灵, 王翠喆, 张君(
), 孟平平(
)
收稿日期:
2024-08-25
修回日期:
2024-10-25
出版日期:
2024-12-20
发布日期:
2024-11-15
通讯作者:
张君,博士,教授,研究方向:肥胖、炎症及代谢相关疾病中关键信号转导分子的调控机制和干预方式基础研究。E-mail: zhangjunyc@163.com;作者简介:
陈瑶,硕士研究生,专业方向:生物化学与分子生物学。E-mail: 1694094508@qq.com
基金资助:
Yao Chen(), Xin Wen, Fangyuan Yuan, Chaoling Peng, Cuizhe Wang, Jun Zhang(
), Pingping Meng(
)
Received:
2024-08-25
Revised:
2024-10-25
Published:
2024-12-20
Online:
2024-11-15
Supported by:
摘要:
溶质载体家族25成员21 (solute carrier 25 member 21, SLC25A21)是氧代二羧酸盐载体,其主要功能是通过反向交换机制将胞浆内的2-氧代己二酸转运至线粒体。前期研究发现,在过表达SLC25A21的3T3-L1细胞中葡萄糖消耗能力显著增加。为进一步挖掘SLC25A21下游关键代谢基因,本研究在3T3-L1细胞中上调SLC25A21表达,利用高通量测序结合生物信息学分析获得差异表达基因,并通过实时荧光定量聚合酶链式反应(quantitative real-time polymerase chain reaction,qRT-PCR)验证关键基因表达。结果显示:(1)过表达SLC25A21的脂肪细胞中有26个上调基因,66个下调基因;(2)基因本体论(gene ontology, GO)分析表明,差异表达基因的生物学功能主要涉及脂质合成和代谢过程;京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)和基因集富集分析(gene set enrichment analysis, GSEA)表明,差异表达基因主要富集在鞘脂代谢、胰岛素和胰高血糖素样肽1分泌和合成等信号通路;(3) CytoHubba筛选出GRB2、SOS1、SHC1、CBL、HRAS、SOS2、EGFR、MET、PLCG2和KRAS等10个评分最高的关键基因,主要参与了细胞的糖、脂代谢过程;(4)在脂肪细胞中过表达SLC25A21,qRT-PCR验证结果表明除KRAS表达无明显变化外,其余基因的mRNA表达水平均出现相应的增高。本研究结果将为今后深入研究SLC25A21在糖、脂代谢过程中的作用及机制提供理论依据。
陈瑶, 温馨, 袁芳媛, 彭钞灵, 王翠喆, 张君, 孟平平. 基于生物信息学对SLC25A21下游靶基因的筛选及验证[J]. 遗传, 2024, 46(12): 1055-1065.
Yao Chen, Xin Wen, Fangyuan Yuan, Chaoling Peng, Cuizhe Wang, Jun Zhang, Pingping Meng. Screening and validation of downstream target genes of SLC25A21 based on bioinformatics[J]. Hereditas(Beijing), 2024, 46(12): 1055-1065.
表1
本研究使用的引物序列"
基因 | 上游引物序列(5′→3′) | 下游引物序列(5′→3′) |
---|---|---|
GRB2 | GCAAAATCCCCAGAGCCAAG | GCAAAATCCCCAGAGCCAAG |
SOS1 | GAGACATCCCACACCTCTGC | ATGCTGTGCTTTCCGTCTCA |
SHC1 | TTCGCCAAGACAACTGAGCA | TGCCCGAAAGCAGAAGGTAG |
CBL | CAGGCAGGGAGTTAGCACAA | TCACGGCAAGCCTACAGAAC |
HRAS | ACCGGAAACAGGTGGTCATT | TCCCGCATGGCACTATACTC |
KRAS | GCGCCTTGACGATACAGCTAA | TACACAAAGAAAGCCCTCCCC |
SOS2 | GGCGTTAGAAAAAGGCGAGC | AACCCAGTGGCGAAAGACAT |
EGFR | GCAATGTTCCCATCGCTGTC | CAGGTGTCTTTGCATGTGGC |
PLCG2 | GATGAGGCTTCGATACCCCG | CTGCGCTTGGCTTTGTAGTC |
MET | CCCAGCCCAAACTACCTCTG | ACCAGCTTTGGGAGGCTAAC |
表2
测序数据质量预处理结果"
样本 | 原始reads 数目(M) | 原始测 序量(Gb) | 过滤后的 reads数目(M) | 过滤后的 测序量(Gb) | 有效碱基 百分比(%) | Q30(%) | GC(%) |
---|---|---|---|---|---|---|---|
NC1 | 48.63 | 7.16 | 46.9 | 6.91 | 96.45 | 93.26 | 50.74 |
NC2 | 49.27 | 7.26 | 47.57 | 7.01 | 96.54 | 93.34 | 50.59 |
NC3 | 49.27 | 7.23 | 47.35 | 6.95 | 96.1 | 93.31 | 50.75 |
OE1 | 49.87 | 7.32 | 47.93 | 7.04 | 96.11 | 93.17 | 50.74 |
OE2 | 48.81 | 7.2 | 47.11 | 6.95 | 96.52 | 93.1 | 50.63 |
OE3 | 48.29 | 7.14 | 46.79 | 6.92 | 96.9 | 93.32 | 50.28 |
表3
测序reads基因组比对结果"
样本 | Total reads | Total mapped reads | Multiple mapped | Uniquely mapped | Read | Non-splice reads | Splice reads | Reads mapped in proper pairs |
---|---|---|---|---|---|---|---|---|
NC1 | 46899752 | 45533180 (97.09%) | 2265197 (4.83%) | 43267983 (92.26%) | 21654638 (46.17%) | 24015475 (51.21%) | 19252508 (41.05%) | 42694074 (91.03%) |
NC2 | 47565180 | 46131900 (96.99%) | 2324947 (4.89%) | 43806953 (92.10%) | 21919628 (46.08%) | 24346626 (51.19%) | 19460327 (40.91%) | 43211796 (90.85%) |
NC3 | 47350582 | 45976707 (97.10%) | 2344644 (4.95%) | 43632063 (92.15%) | 21837383 (46.12%) | 24004218 (50.69%) | 19627845 (41.45%) | 43059252 (90.94%) |
OE1 | 47933810 | 46408234 (96.82%) | 2373324 (4.95%) | 44034910 (91.87%) | 22039724 (45.98%) | 24351292 (50.80%) | 19683618 (41.06%) | 43439056 (90.62%) |
OE2 | 47107546 | 45678757 (96.97%) | 2316938 (4.92%) | 43361819 (92.05%) | 21709112 (46.08%) | 23931808 (50.80%) | 19430011 (41.25%) | 42764390 (90.78%) |
OE3 | 46791584 | 45401464 (97.03%) | 2315495 (4.95%) | 43085969 (92.08%) | 21568015 (46.09%) | 24044762 (51.39%) | 19041207 (40.69%) | 42485994 (90.80%) |
[1] | Liu AR, Liu YN, Shen SX, Yan LR, Lv Z, Ding HX, Wang A, Yuan Y, Xu Q. Comprehensive analysis and validation of solute carrier family 25 (SLC25) and its correlation with immune infiltration in pan-cancer. Biomed Res Int, 2022, 2022: 4009354. |
[2] | Kunji ERS. Structural and mechanistic aspects of mitochondrial transport proteins. Comprehensive Biophysics, 2012, 8: 174-205. |
[3] |
Palmieri F, Monné M. Discoveries, metabolic roles and diseases of mitochondrial carriers: a review. Biochim Biophys Acta, 2016, 1863(10): 2362-2378.
doi: 10.1016/j.bbamcr.2016.03.007 pmid: 26968366 |
[4] | Rochette L, Meloux A, Zeller M, Malka G, Cottin Y, Vergely C. Mitochondrial SLC25 carriers: novel targets for cancer therapy. Molecules, 2020, 25(10): 2417. |
[5] |
Jiang Y, Rose AJ, Sijmonsma TP, Bröer A, Pfenninger A, Herzig S, Schmoll D, Bröer S. Mice lacking neutral amino acid transporter B(0)AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control. Mol Metab, 2015, 4(5): 406-417.
doi: 10.1016/j.molmet.2015.02.003 pmid: 25973388 |
[6] | Coon SD, Rajendran VM, Schwartz JH, Singh SK. Glucose-dependent insulinotropic polypeptide-mediated signaling pathways enhance apical PepT1 expression in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol, 2015, 308(1): G56-G62. |
[7] | Crocco P, Dato S, Montesanto A, Bonfigli AR, Testa R, Olivieri F, Passarino G, Rose G. The genetic variability of members of the SLC38 family of amino acid transporters (SLC38A3, SLC38A 7and SLC38A9) affects susceptibility to type 2 diabetes and vascular complications. Nutrients, 2022, 14(21): 4440. |
[8] | Kunji ERS, King MS, Ruprecht JJ, Thangaratnarajah C. The SLC25 carrier family: important transport proteins in mitochondrial physiology and pathology. Physiology (Bethesda), 2020, 35(5): 302-327. |
[9] |
Liu Y, Li CX, Fang LL, Wang LY, Liu HC, Tian H, Zheng YJ, Fan T, He J. Lipid metabolism-related lncRNA SLC25A21-AS1 promotes the progression of oesophageal squamous cell carcinoma by regulating the NPM1/c-Myc axis and SLC25A21 expression. Clin Transl Med, 2022, 12(6): e944.
doi: 10.1002/ctm2.944 pmid: 35735113 |
[10] | Moussa S. Oxidative stress in diabetes mellitus. Romanian J Biophys, 2008, 18(3): 225-236. |
[11] | Erejuwa OO. Oxidative stress in diabetes mellitus: is there a role for hypoglycemic drugs and/or antioxidants? Oxidative Stress and Diseases, 2012, 217-246. |
[12] | Ceriello A. Oxidative stress and diabetes-associated complications. Endocr Pract, 2006, (Suppl 1): 60-62. |
[13] | Calkins MJ, Manczak M, Reddy PH. Mitochondria- targeted antioxidant SS31 prevents amyloid beta-induced mitochondrial abnormalities and synaptic degeneration in Alzheimer’s disease. Pharmaceuticals (Basel), 2012, 5(10): 1103-1119. |
[14] | Pan CG. Role and mechanism of miR-548ab in the development of T2DM [Dissertation]. Shihezi University, 2022. |
潘重阁. miR-548ab在T2DM发生发展过程中的作用及机制研究[学位论文]. 石河子大学, 2022. | |
[15] |
Sherman BT, Hao M, Qiu J, Jiao XL, Baseler MW, Lane HC, Imamichi T, Chang WZ. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res, 2022, 50(W1): W216-W221.
doi: 10.1093/nar/gkac194 pmid: 35325185 |
[16] |
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 2005, 102(43): 15545-15550.
doi: 10.1073/pnas.0506580102 pmid: 16199517 |
[17] |
Huizing M, Iacobazzi V, Ijlst L, Savelkoul P, Ruitenbeek W, van den Heuvel L, Indiveri C, Smeitink J, Trijbels F, Wanders R, Palmieri F. Cloning of the human carnitine-acylcarnitine carrier cDNA and identification of the molecular defect in a patient. Am J Hum Genet, 1997, 61(6): 1239-1245.
doi: 10.1086/301628 pmid: 9399886 |
[18] |
Indiveri C, Tonazzi A, Palmieri F. Identification and purification of the carnitine carrier from rat liver mitochondria. Biochim Biophys Acta, 1990, 1020(1): 81-86.
pmid: 2223786 |
[19] |
Aquila H, Link TA, Klingenberg M. The uncoupling protein from brown fat mitochondria is related to the mitochondrial ADP/ATP carrier. analysis of sequence homologies and of folding of the protein in the membrane. EMBO J, 1985, 4(9): 2369-2376.
doi: 10.1002/j.1460-2075.1985.tb03941.x pmid: 3000775 |
[20] | Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab, 2007, 293(2): E444- E452. |
[21] | Javed K, Fairweather SJ. Amino acid transporters in the regulation of insulin secretion and signalling. Biochem Soc Trans, 2019, 47(2): 571-590. |
[22] |
Casimir M, Lasorsa FM, Rubi B, Caille D, Palmieri F, Meda P, Maechler P. Mitochondrial glutamate carrier GC1 as a newly identified player in the control of glucose-stimulated insulin secretion. J Biol Chem, 2009, 284(37): 25004-25014.
doi: 10.1074/jbc.M109.015495 pmid: 19584051 |
[23] |
Casimir M, Rubi B, Frigerio F, Chaffard G, Maechler P. Silencing of the mitochondrial NADH shuttle component aspartate-glutamate carrier AGC1/Aralar1 in INS-1E cells and rat islets. Biochem J, 2009, 424(3): 459-466.
doi: 10.1042/BJ20090729 pmid: 19764902 |
[24] | Chen PX, Cao YM, Chen SR, Liu ZK, Chen SY, Guo YL. Association of SLC22A1, SLC22A2, SLC47A1, and SLC47A2 polymorphisms with metformin efficacy in type 2 diabetic patients. Biomedicines, 2022, 10(10): 2546. |
[25] |
Zhang YH, Xie LT, Gunasekar SK, Tong D, Mishra A, Gibson WJ, Wang CS, Fidler T, Marthaler B, Klingelhutz A, Abel ED, Samuel I, Smith JK, Cao L, Sah R. SWELL1 is a regulator of adipocyte size, insulin signalling and glucose homeostasis. Nat Cell Biol, 2017, 19(5): 504-517.
doi: 10.1038/ncb3514 pmid: 28436964 |
[26] |
Corbalan-Garcia S, Yang SS, Degenhardt KR, Bar-Sagi D. Identification of the mitogen-activated protein kinase phosphorylation sites on human Sos1 that regulate interaction with Grb2. Mol Cell Biol, 1996, 16(10): 5674-5682.
doi: 10.1128/MCB.16.10.5674 pmid: 8816480 |
[27] |
Xing F, Zhao D, Wu SY, Tyagi A, Wu KR, Sharma S, Liu Y, Deshpande R, Wang YZ, Cleary J, Miller LD, Chittiboyina AG, Yalamanchili C, Mo YY, Watabe K. Epigenetic and posttranscriptional modulation of Sos1 can promote breast cancer metastasis through obesity- activated c-met signaling in african-american women. Cancer Res, 2021, 81(11): 3008-3021.
doi: 10.1158/0008-5472.CAN-19-4031 pmid: 33446575 |
[28] | Baltanás FC, García-Navas R, Santos E. SOS2 comes to the fore: differential functionalities in physiology and pathology. Int J Mol Sci, 2021, 22(12): 6613. |
[29] | Jiang YM, Xu L, Zhu X, Zhu XW, Xu X, Li JB. Hyperglycemic stress induces oxidative damage of enteric glial cells by triggering redoxosomes/p66SHC activation. Redox Rep, 2024, 29(1): 2324234. |
[30] | Powell AM, Edwards NA, Hunter H, Kiser P, Watson AJ, Cumming RC, Betts DH. Deletion of p66Shc dysregulates ERK and STAT3 activity in mouse embryonic stem cells, enhancing their naive-like self-renewal in the presence of leukemia inhibitory factor. Stem Cells Dev, 2023, 32(15-16): 434-449. |
[31] | Mousavi S, Khazeei Tabari MA, Bagheri A, Samieefar N, Shaterian N, Kelishadi R. The role of p66shc in diabetes: a comprehensive review from bench to bedside. J Diabetes Res, 2022, 2022: 7703520. |
[32] |
Ameen GI, Mora S. Cbl downregulation increases RBP4 expression in adipocytes of female mice. J Endocrinol, 2018, 236(1): 29-41.
doi: 10.1530/JOE-17-0359 pmid: 29114012 |
[33] | Gupte A, Mora S. Activation of the Cbl insulin signaling pathway in cardiac muscle; dysregulation in obesity and diabetes. Biochem Biophys Res Commun, 2006, 342(3): 751-757. |
[34] | Muthusamy M, Ramani P, Arumugam P. Effect of harvey rat sarcoma virus mutation in oral squamous cell carcinoma and its influence on different populations: a systematic review. Cureus, 2023, 15(9): e45505. |
[35] |
Bost F, Aouadi M, Caron L, Binétruy B. The role of MAPKs in adipocyte differentiation and obesity. Biochimie, 2005, 87(1): 51-56.
doi: 10.1016/j.biochi.2004.10.018 pmid: 15733737 |
[36] | Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol, 2006, 7(12): 885-896. |
[37] | Park JC, Jeong WJ, Seo SH, Choi KY. WDR76 mediates obesity and hepatic steatosis via HRas destabilization. Sci Rep, 2019, 9(1): 19676. |
[38] | Yu WJ, Chen CZ, Peng YX, Li Z, Gao Y, Liang S, Yuan B, Kim NH, Jiang H, Zhang JB. KRAS affects adipogenic differentiation by regulating autophagy and mapk activation in 3T3-L1 and C2C12 cells. Int J Mol Sci, 2021, 22(24): 13630. |
[39] | Harrington M, Pond-Tor S, Boney CM. Role of epidermal growth factor and ErbB2 receptors in 3T3-L1 adipogenesis. Obesity (Silver Spring), 2007, 15(3): 563-571. |
[40] |
Wang T, Wang YX, Yamashita H. Evodiamine inhibits adipogenesis via the EGFR-PKCalpha-ERK signaling pathway. FEBS Lett, 2009, 583(22): 3655-3659.
doi: 10.1016/j.febslet.2009.10.046 pmid: 19854188 |
[41] | Organ SL, Tsao MS. An overview of the c-MET signaling pathway. Ther Adv Med Oncol, 2011, 3(1 Suppl): S7-S19. |
[42] | Oliveira AG, Araújo TG, Carvalho BM, Rocha GZ, Santos A, Saad MJA. The role of hepatocyte growth factor (HGF) in insulin resistance and diabetes. Front Endocrinol (Lausanne), 2018, 9: 503. |
[43] | Park YK, Jang BC. The receptor tyrosine kinase c-met promotes lipid accumulation in 3T3-L1 adipocytes. Int J Mol Sci, 2023, 24(9): 8086. |
[44] | Tang RQ, Ma FF, Li W, Ouyang SR, Liu Z, Wu JX. miR-206-3p inhibits 3T3-L1 cell adipogenesis via the c-Met/PI3K/Akt pathway. Int J Mol Sci, 2017, 18(7): 1510. |
[45] | Visvanathan R, Utsuki T, Beck DE, Clayton WB, Lendy E, Sun KL, Liu YH, Hering KW, Mesecar A, Zhang ZY, Putt KS. A novel micellular fluorogenic substrate for quantitating the activity of 1-phosphatidylinositol 4, 5-bisphosphate phosphodiesterase gamma (PLCγ) enzymes. PLoS One, 2024, 19(3): e0299541. |
[46] | Hopp SC, Rogers JG, Smith S, Campos G, Miller H, Barannikov S, Kuri EG, Wang H, Han XL, Bieniek KF, Weintraub ST, Palavicini JP. Multi-omics analyses reveal novel effects of PLCγ2 deficiency in the mouse brain. bioRxiv, 2023, 8: 2023.12.06.570499. |
[1] | 吴岳阳, 周小燕, 吴玉峰, 黄驹. NMD途径功能缺陷对水稻表型及转录组的影响[J]. 遗传, 2024, 46(7): 540-551. |
[2] | 温馨, 梅锦, 钱美玉, 蒋一丹, 王娟, 许士博, 王翠喆, 张君. 基于转录组测序对GULP1下游靶基因筛选及分析[J]. 遗传, 2024, 46(10): 860-870. |
[3] | 王芳, 张跃博, 蒋谦, 印遇龙, 谭碧娥, 陈家顺. 宁乡猪皮下脂肪与肌内脂肪组织转录组差异分析[J]. 遗传, 2023, 45(12): 1147-1157. |
[4] | 郭彦, 杨乐乐, 戚华宇. 小鼠雄性生殖干细胞转录组分析揭示成熟精原干细胞特征[J]. 遗传, 2022, 44(7): 591-608. |
[5] | 王姗姗, 赵琬怡, 吴慧潇, 舒梦, 袁嘉欣, 方丽, 徐潮. 特发性低促性腺激素性性腺功能减退症FGFR1与CEP290基因变异研究[J]. 遗传, 2022, 44(10): 937-949. |
[6] | 向虹, 阳小胡, 艾亮霞, 潘燕平, 胡勇. 脱发相关差异表达基因的生物信息学分析[J]. 遗传, 2020, 42(2): 172-182. |
[7] | 吕红强, 郝乐乐, 刘二虎, 吴志芳, 韩九强, 刘源. 基于生物信息学的Hi-C研究现状与发展趋势[J]. 遗传, 2020, 42(1): 87-99. |
[8] | 卢涣滋,王迪侃,王智. HPV阳性口咽癌患者预后与T细胞浸润和新抗原负荷相关性分析[J]. 遗传, 2019, 41(8): 725-735. |
[9] | 陈家辉, 任学义, 李丽敏, 卢诗意, 程湉, 谭量天, 梁少东, 何丹林, 罗庆斌, 聂庆华, 张细权, 罗文. 转录组测序揭示细胞周期通路参与鸡腹脂沉积[J]. 遗传, 2019, 41(10): 962-973. |
[10] | 张源笙,夏琳,桑健,李漫,刘琳,李萌伟,牛广艺,曹佳宝,滕徐菲,周晴,章张. 生命与健康大数据中心资源[J]. 遗传, 2018, 40(11): 1039-1043. |
[11] | 向小华, 吴新儒, 晁江涛, 杨明磊, 杨帆, 陈果, 刘贯山, 王元英. 普通烟草WRKY基因家族的鉴定及表达分析[J]. 遗传, 2016, 38(9): 840-856. |
[12] | 李晓旭, 刘成, 李伟, 张增林, 高晓明, 周慧, 郭永峰. 番茄WOX转录因子家族的鉴定及其进化、表达分析[J]. 遗传, 2016, 38(5): 444-460. |
[13] | 周学, 杜宜兰, 金萍, 马飞. 癌症相关microRNA与靶基因的生物信息学分析[J]. 遗传, 2015, 37(9): 855-864. |
[14] | 方翔, 李宁求, 付小哲, 李凯彬, 林强, 刘礼辉, 石存斌, 吴淑勤. 基于“天河二号”的水产病原生物信息分析平台构建及其在水产病原分析中的应用[J]. 遗传, 2015, 37(7): 702-710. |
[15] | 邱红梅,郝文媛,高淑芹,马晓萍,郑宇宏,孟凡凡,范旭红,王洋,王跃强,王曙明. 大豆含硫氨基酸相关酶基因发掘[J]. 遗传, 2014, 36(9): 934-942. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: