遗传 ›› 2024, Vol. 46 ›› Issue (7): 540-551.doi: 10.16288/j.yczz.24-063
收稿日期:
2024-03-12
修回日期:
2024-05-15
出版日期:
2024-07-20
发布日期:
2024-05-31
通讯作者:
吴玉峰,博士,教授,研究方向:生物信息学。E-mail: yfwu@njau.edu.cn;黄驹,博士,副教授,研究方向:遗传变异与进化。E-mail: ponyhuang@njau.edu.cn
作者简介:
吴岳阳,硕士研究生,专业方向:作物遗传育种。E-mail: 2021101088@stu.njau.edu.cn;基金资助:
Yueyang Wu(), Xiaoyan Zhou(), Yufeng Wu(), Ju Huang()
Received:
2024-03-12
Revised:
2024-05-15
Published:
2024-07-20
Online:
2024-05-31
Supported by:
摘要:
无义介导的mRNA降解途径(nonsense-mediated mRNA decay,NMD)是细胞内一种关键的RNA质量控制途径,能够有效的降解细胞内错误的mRNA,以保持细胞内部环境的稳定与健康。本研究通过CRISPR/Cas9及amiRNA技术获得水稻NMD途径相关基因UPF1、UPF1-like、UPF2、UPF3的敲除或敲低型突变体,结合转录组测序和表型观察,探究NMD途径缺陷对水稻基因表达及可变剪接(alternative splicing,AS)的影响。研究结果表明,NMD途径为水稻正常生长所必需,部分缺陷也会造成株高、花粉活力等表型不同程度的变化。对基因表达的分析显示,NMD途径缺陷影响的基因大多表达上调,且ko-upf1-like和kd-upf1对基因表达的影响大于kd-upf2和kd-upf3。具体而言,NMD途径缺陷在水稻中引发了防御反应相关基因表达量的上升及次生代谢相关基因表达量的下降,且在60天龄早衰突变体中影响的基因更为广泛。转录组分析显示,不同的NMD途径相关基因缺陷均改变了数百个可变剪接,这些存在差异可变剪接的基因多与可变剪接调控通路相关,约有一半在不同突变体中共享,且大量富集了NMD靶标的特征。NMD途径能够通过影响可变剪接形式,改变转录本丰度等多种形式,调控防御反应和衰老等通路基因的表达,在水稻维持正常生理功能的过程中有着重要作用。
吴岳阳, 周小燕, 吴玉峰, 黄驹. NMD途径功能缺陷对水稻表型及转录组的影响[J]. 遗传, 2024, 46(7): 540-551.
Yueyang Wu, Xiaoyan Zhou, Yufeng Wu, Ju Huang. Effects of functional defects in the NMD pathway on rice phenotype and transcriptome[J]. Hereditas(Beijing), 2024, 46(7): 540-551.
图4
60天龄早衰突变体中转录组变化 A:野生型与60天龄早衰突变体(old)间差异基因的鉴定(BH-corrected padj<0.01和log2 fold change>1);B:60天龄早衰突变体中表达上调或表达下调的差异基因的GO富集热图(-log10(P-value));C:防御反应相关基因OsCPK18、OsMLA10相对表达量;D:RNA剪接相关基因OsLowAC1、OsRS29相对表达量;E:乙烯调节相关基因CP相对表达量;F:次生代谢相关基因OsDIR29、OsACS7相对表达量;G:不同时期突变体中存在差异可变剪接基因的共享情况;H:不同时期突变体中独有的存在差异可变剪接基因的GO富集热图(-log10(P-value))。"
[1] |
Raxwal VK, Riha K. Nonsense mediated RNA decay and evolutionary capacitance. Biochim Biophys Acta, 2016, 1859(12): 1538-1543.
doi: S1874-9399(16)30186-9 pmid: 27599370 |
[2] |
Zhang ZG, Hu LD, Kong XY. MicroRNA or NMD: why have two RNA silencing systems? J Genet Genomics, 2013, 40(10): 497-513.
doi: 10.1016/j.jgg.2013.09.002 pmid: 24156916 |
[3] | Hwang HJ, Park Y, Kim YK. UPF1: from mRNA surveillance to protein quality control. Biomedicines, 2021, 9(8): 995. |
[4] | Karousis ED, Mühlemann O. Nonsense-mediated mRNA decay begins where translation ends. Cold Spring Harb Perspect Biol, 2019, 11(2): a032862. |
[5] |
Losson R, Lacroute F. Interference of nonsense mutations with eukaryotic messenger RNA stability. Proc Natl Acad Sci USA, 1979, 76(10): 5134-5137.
pmid: 388431 |
[6] | Peltz SW, Brown AH, Jacobson A. mRNA destabilization triggered by premature translational termination depends on at least three cis-acting sequence elements and one trans-acting factor. Genes Dev, 1993, 7(9): 1737-1754. |
[7] |
Kurihara Y, Matsui A, Hanada K, Kawashima M, Ishida J, Morosawa T, Tanaka M, Kaminuma E, Mochizuki Y, Matsushima A, Toyoda T, Shinozaki K, Seki M. Genome-wide suppression of aberrant mRNA-like noncoding RNAs by NMD in Arabidopsis. Proc Natl Acad Sci USA, 2009, 106(7): 2453-2458.
doi: 10.1073/pnas.0808902106 pmid: 19181858 |
[8] | Kurosaki T, Popp MW, Maquat LE. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol, 2019, 20(7): 406-420. |
[9] |
Nasif S, Contu L, Mühlemann O. Beyond quality control: the role of nonsense-mediated mRNA decay (NMD) in regulating gene expression. Semin Cell Dev Biol, 2018, 75: 78-87.
doi: S1084-9521(17)30342-7 pmid: 28866327 |
[10] |
Kim YK, Maquat LE. UPFront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond. RNA, 2019, 25(4): 407-422.
doi: 10.1261/rna.070136.118 pmid: 30655309 |
[11] | Chen BL, Wang HM, Lin XS, Zeng YM. UPF1: a potential biomarker in human cancers. Front Biosci (Landmark Ed), 2021, 26(5): 76-84. |
[12] |
Gupta P, Li YR. Upf proteins: highly conserved factors involved in nonsense mRNA mediated decay. Mol Biol Rep, 2018, 45(1): 39-55.
doi: 10.1007/s11033-017-4139-7 pmid: 29282598 |
[13] | Kalathiya U, Padariya M, Pawlicka K, Verma CS, Houston D, Hupp TR, Alfaro JA. Insights into the effects of cancer associated mutations at the UPF2 and ATP-binding sites of NMD master regulator: UPF1. Int J Mol Sci, 2019, 20(22): 5644. |
[14] |
Deka B, Chandra P, Singh KK. Functional roles of human Up-frameshift suppressor 3 (UPF3) proteins: from nonsense-mediated mRNA decay to neurodevelopmental disorders. Biochimie, 2021, 180: 10-22.
doi: 10.1016/j.biochi.2020.10.011 pmid: 33132159 |
[15] |
Park J, Seo JW, Ahn N, Park S, Hwang J, Nam JW. UPF1/SMG7-dependent microRNA-mediated gene regulation. Nat Commun, 2019, 10(1): 4181.
doi: 10.1038/s41467-019-12123-7 pmid: 31519907 |
[16] | Powers KT, Szeto JYA, Schaffitzel C. New insights into no-go, non-stop and nonsense-mediated mRNA decay complexes. Curr Opin Struct Biol, 2020, 65: 110-118. |
[17] | Cheng MM, Cao YY. The NMD escape mechanism and its application in disease therapy. Hereditas (Beijing), 2020, 42(4): 354-362. |
程苗苗, 曹延延. NMD逃逸机制及其在疾病治疗中的应用. 遗传, 2020, 42(4): 354-362. | |
[18] |
Shaul O. Unique aspects of plant nonsense-mediated mRNA decay. Trends Plant Sci, 2015, 20(11): 767-779.
doi: S1360-1385(15)00212-5 pmid: 26442679 |
[19] |
Degtiar E, Fridman A, Gottlieb D, Vexler K, Berezin I, Farhi R, Golani L, Shaul O. The feedback control of UPF3 is crucial for RNA surveillance in plants. Nucleic Acids Res, 2015, 43(8): 4219-4235.
doi: 10.1093/nar/gkv237 pmid: 25820429 |
[20] |
Goetz AE, Wilkinson M. Stress and the nonsense-mediated RNA decay pathway. Cell Mol Life Sci, 2017, 74(19): 3509-3531.
doi: 10.1007/s00018-017-2537-6 pmid: 28503708 |
[21] |
Ohtani M, Wachter A. NMD-based gene regulation-a strategy for fitness enhancement in plants? Plant Cell Physiol, 2019, 60(9): 1953-1960.
doi: 10.1093/pcp/pcz090 pmid: 31111919 |
[22] | Watabe E, Togo-Ohno M, Ishigami Y, Wani S, Hirota K, Kimura-Asami M, Hasan S, Takei S, Fukamizu A, Suzuki Y, Suzuki T, Kuroyanagi H. m6A-mediated alternative splicing coupled with nonsense-mediated mRNA decay regulates SAM synthetase homeostasis. EMBO J, 2021, 40(14): e106434. |
[23] | Raxwal VK, Simpson CG, Gloggnitzer J, Entinze JC, Guo WB, Zhang RX, Brown JWS, Riha K. Nonsense-mediated RNA decay factor UPF1 is critical for posttranscriptional and translational gene regulation in Arabidopsis. Plant Cell, 2020, 32(9): 2725-2741. |
[24] |
Isshiki M, Yamamoto Y, Satoh H, Shimamoto K. Nonsense-mediated decay of mutant waxy mRNA in rice. Plant Physiol, 2001, 125(3): 1388-1395.
doi: 10.1104/pp.125.3.1388 pmid: 11244118 |
[25] |
Gong P, Luo YM, Huang FD, Chen YD, Zhao CY, Wu X, Li KY, Yang X, Cheng FM, Xiang X, Wu CY, Pan G. Disruption of a Upf1-like helicase-encoding gene OsPLS2 triggers light-dependent premature leaf senescence in rice. Plant Mol Biol, 2019, 100(1-2): 133-149.
doi: 10.1007/s11103-019-00848-4 pmid: 30843130 |
[26] | Jia YX, Qin C, Traw MB, Chen XN, He Y, Kai J, Yang SH, Wang L, Hurst LD. In rice splice variants that restore the reading frame after frameshifting indel introduction are common, often induced by the indels and sometimes lead to organism-level rescue. PLoS Genet, 2022, 18(2): e1010071. |
[27] | Doyle JJ. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19(1): 11-15. |
[28] |
Imamachi N, Salam KA, Suzuki Y, Akimitsu N. A GC-rich sequence feature in the 3'UTR directs UPF1-dependent mRNA decay in mammalian cells. Genome Res, 2017, 27(3): 407-418.
doi: 10.1101/gr.206060.116 pmid: 27940950 |
[29] |
Bai B, Shi B, Hou N, Cao YL, Meng YJ, Bian HW, Zhu MY, Han N. microRNAs participate in gene expression regulation and phytohormone cross-talk in barley embryo during seed development and germination. BMC Plant Biol, 2017, 17(1): 150.
doi: 10.1186/s12870-017-1095-2 pmid: 28877679 |
[30] |
Wu ZM, Zhang X, He B, Diao LP, Sheng SL, Wang JL, Guo XP, Su N, Wang LF, Jiang L, Wang CM, Zhai HQ, Wan JM. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145(1): 29-40.
doi: 10.1104/pp.107.100321 pmid: 17535821 |
[31] |
Wagstaff C, Leverentz MK, Griffiths G, Thomas B, Chanasut U, Stead AD, Rogers HJ. Cysteine protease gene expression and proteolytic activity during senescence of Alstroemeria petals. J Exp Bot, 2002, 53(367): 233-240.
doi: 10.1093/jexbot/53.367.233 pmid: 11807127 |
[32] | Kamp JA, Lemmens BBLG, Romeijn RJ, González-Prieto R, Olsen JV, Vertegaal ACO, van Schendel R, Tijsterman M. THO complex deficiency impairs DNA double- strand break repair via the RNA surveillance kinase SMG-1. Nucleic Acids Res, 2022, 50(11): 6235-6250. |
[33] |
Oren YS, Pranke IM, Kerem B, Sermet-Gaudelus I. The suppression of premature termination codons and the repair of splicing mutations in CFTR. Curr Opin Pharmacol, 2017, 34: 125-131.
doi: S1471-4892(17)30124-8 pmid: 29128743 |
[34] | Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol, 2022, 23(5): 329-349. |
[35] | Ke YG, Liu HB, Li XH, Xiao JH, Wang SP. Rice OsPAD4 functions differently from Arabidopsis AtPAD4 in host-pathogen interactions. Plant J, 2014, 78(4): 619-631. |
[36] |
Lindeboom RGH, Supek F, Lehner B. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat Genet, 2016, 48(10): 1112-1118.
doi: 10.1038/ng.3664 pmid: 27618451 |
[37] | Drechsel G, Kahles A, Kesarwani AK, Stauffer E, Behr J, Drewe P, Rätsch G, Wachter A. Nonsense-mediated decay of alternative precursor mRNA splicing variants is a major determinant of the Arabidopsis steady state transcriptome. Plant Cell, 2013, 25(10): 3726-3742. |
[38] | El-Brolosy MA, Kontarakis Z, Rossi A, Kuenne C, Günther S, Fukuda N, Kikhi K, Boezio GLM, Takacs CM, Lai SL, Fukuda R, Gerri C, Giraldez AJ, Stainier DYR. Genetic compensation triggered by mutant mRNA degradation. Nature, 2019, 568(7751): 193-197. |
[39] |
Wengrod J, Martin L, Wang D, Frischmeyer-Guerrerio P, Dietz HC, Gardner LB. Inhibition of nonsense-mediated RNA decay activates autophagy. Mol Cell Biol, 2013, 33(11): 2128-2135.
doi: 10.1128/MCB.00174-13 pmid: 23508110 |
[1] | 陈昱颖, 张倩, 桂梦会, 冯岚, 曹鹏博, 周钢桥. PTBP1通过调控FGFR2的可变剪接促进肝癌的发展[J]. 遗传, 2024, 46(1): 46-62. |
[2] | 卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
[3] | 刘向东, 吴锦文, 陆紫君, Muhammad Qasim Shahid. 同源四倍体水稻:低育性机理、改良与育种展望[J]. 遗传, 2023, 45(9): 781-792. |
[4] | 郝小花, 胡爽, 赵丹, 田连福, 谢子靖, 吴莎, 胡文俐, 雷晗, 李东屏. OsGA3ox通过合成不同活性GA调控水稻育性及株高[J]. 遗传, 2023, 45(9): 845-855. |
[5] | 郑镇武, 赵宏源, 梁晓娅, 王一珺, 王驰航, 巩高洋, 黄金燕, 张桂权, 王少奎, 刘祖培. 水稻qGL3.4调控籽粒大小与株型[J]. 遗传, 2023, 45(9): 835-844. |
[6] | 陈明江, 刘贵富, 肖叶青, 余泓, 李家洋. 中科发早粳1号分子设计育种[J]. 遗传, 2023, 45(9): 829-834. |
[7] | 刘永强, 李威威, 刘昕禹, 储成才. 水稻分蘖氮响应调控机理研究进展[J]. 遗传, 2023, 45(5): 367-378. |
[8] | 王芳, 张跃博, 蒋谦, 印遇龙, 谭碧娥, 陈家顺. 宁乡猪皮下脂肪与肌内脂肪组织转录组差异分析[J]. 遗传, 2023, 45(12): 1147-1157. |
[9] | 郭彦, 杨乐乐, 戚华宇. 小鼠雄性生殖干细胞转录组分析揭示成熟精原干细胞特征[J]. 遗传, 2022, 44(7): 591-608. |
[10] | 李姗, 黄允智, 刘学英, 傅向东. 作物氮肥利用效率遗传改良研究进展[J]. 遗传, 2021, 43(7): 629-641. |
[11] | 张昌泉, 冯琳皓, 顾铭洪, 刘巧泉. 江苏省水稻品质性状遗传和重要基因克隆研究进展[J]. 遗传, 2021, 43(5): 425-441. |
[12] | 代航, 李延, 刘树春, 林磊, 吴娟燕, 张志杰, 彭崎春, 李楠, 张向前. 类伸展蛋白OsPEX1对水稻花粉育性的影响[J]. 遗传, 2021, 43(3): 271-279. |
[13] | 闫凌月, 张豪健, 郑雨晴, 丛韫起, 刘次桃, 樊帆, 郑铖, 袁贵龙, 潘根, 袁定阳, 段美娟. 转录因子OsMADS25提高水稻对低温的耐受性[J]. 遗传, 2021, 43(11): 1078-1087. |
[14] | 胡雅丽, 戴睿, 刘永鑫, 张婧赢, 胡斌, 储成才, 袁怀波, 白洋. 水稻典型品种日本晴和IR24根系微生物组的解析[J]. 遗传, 2020, 42(5): 506-518. |
[15] | 张桂权. 基于SSSL文库的水稻设计育种平台[J]. 遗传, 2019, 41(8): 754-760. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: