遗传 ›› 2022, Vol. 44 ›› Issue (7): 591-608.doi: 10.16288/j.yczz.22-047
收稿日期:
2022-02-23
修回日期:
2022-04-26
出版日期:
2022-07-20
发布日期:
2022-07-06
通讯作者:
杨乐乐,戚华宇
E-mail:rxm749426464@qq.com;yang_lele@gibh.ac.cn;qi_huayu@gibh.ac.cn
作者简介:
郭彦,在读硕士研究生,专业方向:生物工程。E-mail: 基金资助:
Yan Guo1(), Lele Yang2(), Huayu Qi2()
Received:
2022-02-23
Revised:
2022-04-26
Online:
2022-07-20
Published:
2022-07-06
Contact:
Yang Lele,Qi Huayu
E-mail:rxm749426464@qq.com;yang_lele@gibh.ac.cn;qi_huayu@gibh.ac.cn
Supported by:
摘要:
精原干细胞(spermatogonial stem cells, SSCs)是成年动物睾丸中的成体干细胞,具有自我更新与分化的能力。小鼠(Mus musculus)精原干细胞来源于胚胎期的原始生殖细胞(primodial germ cells, PGCs),小鼠出生前原始生殖细胞处于有丝分裂静止状态,出生后恢复增殖并由曲细精管中央迁移至管壁基质,建立稳定的精原干细胞克隆。成熟小鼠的精原干细胞周期性地启动精子发生以维持雄性动物长期稳定的生殖能力。精原干细胞在其建立和成熟后是否具有特征上的差异目前尚不清楚。本研究在前期建立的不同年龄小鼠精原干细胞(表达多能性基因Pou5f1编码的OCT4)转录组数据基础上,对小鼠新生期(出生后3天)、幼年期(出生后7天)和成熟期(2~3月龄)精原干细胞的基因表达差异进行了生物信息学分析,包括差异表达基因(differentially expression genes, DEGs)的筛选、DEGs编码的蛋白相互作用网络(protein-protein interaction, PPI)的建立、功能聚类富集(Gene Ontology, GO)和通路分析(Kyoto Encyclopedia of Genes and Genomes, KEGG),以及使用基于GO、KEGG和HALLMARK的基因集富集分析(gene set enrichment analysis, GSEA)。结果显示,OCT4阳性精原干细胞在小鼠新生期、幼年期和成熟期存在大量差异表达基因,所编码的蛋白主要生物学功能集中在生物合成和能量代谢、免疫反应、细胞连接和迁移以及细胞分化等方面。精原干细胞细胞膜成分的显著变化可能影响精原干细胞的超敏反应、细胞间相互作用以及对细胞外环境因子的应答反应。在能量代谢方式上,随着年龄的增加,OCT4阳性精原干细胞逐渐从线粒体氧化磷酸化作用转变为糖酵解作用,同时也显著减少了细胞内核糖体形成相关基因的转录。这些结果为进一步研究雄性生殖干细胞形成和成熟的调控机制提供了新的思路。
郭彦, 杨乐乐, 戚华宇. 小鼠雄性生殖干细胞转录组分析揭示成熟精原干细胞特征[J]. 遗传, 2022, 44(7): 591-608.
Yan Guo, Lele Yang, Huayu Qi. Transcriptome analysis of mouse male germline stem cells reveals characteristics of mature spermatogonial stem cells[J]. Hereditas(Beijing), 2022, 44(7): 591-608.
附表1
qRT-PCR引物序列"
序号 | 基因 | 上游引物(5′→3′) | 下游引物(5′→3′) |
---|---|---|---|
1 | Actin | TGTACCCAGGCATTGCTGACAG | CTGCTGGAAGGTGGACAGTG |
2 | Id4 | CACTCACCGCGCTCAACA | CTCCGGTGGCTTGTTTCTCTT |
3 | Ybx2 | GGAGTTTGATGTCGTGGAAGG | CGTCGATTAGGGGCATAGCG |
4 | Ddr1 | ATGCTGACATGAAGGGACATTT | GGTGTAGCCTACGAAGGTCCA |
5 | Nefm | ATGACGAGCCATTTCCCACT | TGCAGTCCAAGAGCATCGAG |
6 | Fxyd6 | TCTCCGTTGGGATACTTCTCAT | CTCCGCAGCGTTTGTAGTGAT |
7 | Gfra1 | AACTGCCAGCCAGAGTCAAG | GGCTGCTGGAGTCTATGTAG |
8 | Rarg | TGCCTGGTTTTACAGGGCTC | TCCGAGAATGTCATAGTGTCCT |
[1] |
Vander Borght M, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem, 2018, 62:2-10.
doi: 10.1016/j.clinbiochem.2018.03.012 |
[2] |
Agarwal A, Baskaran S, Parekh N, Cho CL, Henkel R, Vij S, Arafa M, Panner Selvam MK, Shah R. Male infertility. Lancet, 2021, 397(10271):319-333.
doi: 10.1016/S0140-6736(20)32667-2 pmid: 33308486 |
[3] |
Phillips BT, Gassei K, Orwig KE. Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci, 2010, 365(1546):1663-1678.
doi: 10.1098/rstb.2010.0026 |
[4] | Mei XX, Wang J, Wu J. Extrinsic and intrinsic factors controlling spermatogonial stem cell self-renewal and differentiation. Asian J Androl, 2015, 17(3):347-354. |
[5] | Jan SZ, Vormer TL, Jongejan A, Röling MD, Silber SJ, de Rooij DG, Hamer G, Repping S, van Pelt AMM. Unraveling transcriptome dynamics in human spermatogenesis. Development, 2017, 144(20):3659-3673. |
[6] |
Izadyar F, Den Ouden K, Stout TAE, Stout J, Coret J, Lankveld DPK, Spoormakers TJP, Colenbrander B, Oldenbroek JK, Van der Ploeg KD, Woelders H, Kal HB, De Rooij DG. Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction, 2003, 126(6):765-774.
pmid: 14748695 |
[7] |
Schlatt S, Foppiani L, Rolf C, Weinbauer GF, Nieschlag E. Germ cell transplantation into X-irradiated monkey testes. Hum Reprod, 2002, 17(1):55-62.
pmid: 11756362 |
[8] |
Jahnukainen K, Ehmcke J, Quader MA, Saiful Huq M, Epperly MW, Hergenrother S, Nurmio M, Schlatt S. Testicular recovery after irradiation differs in prepubertal and pubertal non-human primates, and can be enhanced by autologous germ cell transplantation. Hum Reprod, 2011, 26(8):1945-1954.
doi: 10.1093/humrep/der160 |
[9] |
Hermann BP, Sukhwani M, Winkler F, Pascarella JN, Peters KA, Sheng Y, Valli H, Rodriguez M, Ezzelarab M, Dargo G, Peterson K, Masterson K, Ramsey C, Ward T, Lienesch M, Volk A, Cooper DK, Thomson AW, Kiss JE, Penedo MCT, Schatten GP, Mitalipov S, Orwig KE. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell, 2012, 11(5):715-726.
doi: 10.1016/j.stem.2012.07.017 pmid: 23122294 |
[10] |
Nakagawa T, Sharma M, Nabeshima Y, Braun RE, Yoshida S. Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science, 2010, 328(5974):62-67.
doi: 10.1126/science.1182868 |
[11] |
Carrieri C, Comazzetto S, Grover A, Morgan M, Buness A, Nerlov C, O'Carroll D. A transit-amplifying population underpins the efficient regenerative capacity of the testis. J Exp Med, 2017, 214(6):1631-1641.
doi: 10.1084/jem.20161371 |
[12] |
La HM, Mäkelä JA, Chan AL, Rossello FJ, Nefzger CM, Legrand JMD, De Seram M, Polo JM, Hobbs RM. Identification of dynamic undifferentiated cell states within the male germline. Nat Commun, 2018, 9(1):2819.
doi: 10.1038/s41467-018-04827-z |
[13] |
Clevers H, Watt FM. Defining adult stem cells by function, not by phenotype. Annu Rev Biochem, 2018, 87:1015-1027.
doi: 10.1146/annurev-biochem-062917-012341 pmid: 29494240 |
[14] |
Mäkelä JA, Hobbs RM. Molecular regulation of spermatogonial stem cell renewal and differentiation. Reproduction, 2019, 158(5):R169-R187.
doi: 10.1530/REP-18-0476 |
[15] |
Nagano M, Avarbock MR, Brinster RL. Pattern and kinetics of mouse donor spermatogonial stem cell colonization in recipient testes. Biol Reprod, 1999, 60(6):1429-1436.
pmid: 10330102 |
[16] |
Nagano MC. Homing efficiency and proliferation kinetics of male germ line stem cells following transplantation in mice. Biol Reprod, 2003, 69(2):701-707.
doi: 10.1095/biolreprod.103.016352 |
[17] |
Forbes CM, Flannigan R, Schlegel PN. Spermatogonial stem cell transplantation and male infertility: current status and future directions. Arab J Urol, 2017, 16(1):171-180.
doi: 10.1016/j.aju.2017.11.015 |
[18] |
Schmidt JA, Abramowitz LK, Kubota H, Wu X, Niu Z, Avarbock MR, Tobias JW, Bartolomei MS, Brinster RL. In vivo and in vitro aging is detrimental to mouse spermatogonial stem cell function. Biol Reprod, 2011, 84(4):698-706.
doi: 10.1095/biolreprod.110.088229 |
[19] |
Kanatsu-Shinohara M, Ogonuki N, Iwano T, Lee J, Kazuki Y, Inoue K, Miki H, Takehashi M, Toyokuni S, Shinkai Y, Oshimura M, Ishino F, Ogura A, Shinohara T. Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development, 2005, 132(18):4155-4163.
pmid: 16107472 |
[20] |
Subash SK, Kumar PG. Spermatogonial stem cells: a story of self-renewal and differentiation. Front Biosci (Landmark Ed), 2021, 26:163-205.
doi: 10.2741/4891 pmid: 33049667 |
[21] |
Zhao X, Yang HQ. Progress on spermatogonial stem cells of large animals. Hereditas(Beijing), 2019, 41(8):686-702.
doi: 10.16288/j.yczz.19-167 pmid: 31447420 |
赵鑫, 杨化强. 大动物精原干细胞研究进展. 遗传, 2019, 41(8):686-702.
doi: 10.16288/j.yczz.19-167 pmid: 31447420 |
|
[22] | Mäkelä JA, Toppari J. Spermatogenesis. In: Simoni M, Huhtaniemi I, eds. Endocrinology of the Testis and Male Reproduction. Endocrinology. Springer Cham, 2017, 417-455. |
[23] |
Liao JY, Suen HC, Luk ACS, Yang LL, Lee AWT, Qi HY, Lee TL. Transcriptomic and epigenomic profiling of young and aged spermatogonial stem cells reveals molecular targets regulating differentiation. PLoS Genet, 2021, 17(7):e1009369.
doi: 10.1371/journal.pgen.1009369 |
[24] |
Yang LL, Wu W, Qi HY. Gene expression profiling revealed specific spermatogonial stem cell genes in mouse. Genesis, 2013, 51(2):83-96.
doi: 10.1002/dvg.22358 |
[25] |
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015, 12(4):357-360.
doi: 10.1038/NMETH.3317 |
[26] |
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15(12):550.
doi: 10.1186/s13059-014-0550-8 |
[27] |
Jiang YA, Leng JX, Lin QX, Zhou F. Epithelial- mesenchymal transition related genes in unruptured aneurysms identified through weighted gene coexpression network analysis. Sci Rep, 2022, 12(1):225.
doi: 10.1038/s41598-021-04390-6 |
[28] |
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res, 2021, 49(D1):D605-D612.
doi: 10.1093/nar/gkaa1074 pmid: 33237311 |
[29] |
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13(11):2498-2504.
doi: 10.1101/gr.1239303 pmid: 14597658 |
[30] |
Bader GD, Hogue CWV. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4:2.
pmid: 12525261 |
[31] |
Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol, 2003, 4(5):P3.
pmid: 12734009 |
[32] |
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics, 2011, 27(12):1739-1740.
doi: 10.1093/bioinformatics/btr260 pmid: 21546393 |
[33] |
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 2005, 102(43):15545-15550.
doi: 10.1073/pnas.0506580102 |
[34] |
Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst, 2015, 1(6):417-425.
doi: 10.1016/j.cels.2015.12.004 pmid: 26771021 |
[35] |
Liberzon A. A description of the Molecular Signatures Database (MSigDB) Web site. Methods Mol Biol, 2014, 1150:153-160.
doi: 10.1007/978-1-4939-0512-6_9 pmid: 24743996 |
[36] | Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 1995, 57(1):289-300. |
[37] |
Wang T, Zhang XY, Chen QY, Deng TT, Zhang Y, Li N, Shang T, Chen YM, Han DS. Toll-like receptor 3-initiated antiviral responses in mouse male germ cells in vitro. Biol Reprod, 2012, 86(4):106.
doi: 10.1095/biolreprod.111.096719 pmid: 22262694 |
[38] | Chen QY, Zhu WW, Liu ZH, Yan KQ, Zhao ST, Han DS. Toll-like receptor 11-initiated innate immune response in male mouse germ cells. Biol Reprod, 2014, 90(2):38. |
[39] |
Mathieu M, Névo N, Jouve M, Valenzuela JI, Maurin M, Verweij FJ, Palmulli R, Lankar D, Dingli F, Loew D, Rubinstein E, Boncompain G, Perez F, Théry C. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat Commun, 2021, 12(1):4389.
doi: 10.1038/s41467-021-24384-2 |
[40] |
Mangold CA, Masser DR, Stanford DR, Bixler GV, Pisupati A, Giles CB, Wren JD, Ford MM, Sonntag WE, Freeman WM. CNS-wide sexually dimorphic induction of the major histocompatibility Complex 1 pathway with aging. J Gerontol A Biol Sci Med Sci, 2017, 72(1):16-29.
doi: 10.1093/gerona/glv232 |
[41] |
Son M, Diamond B, Santiago-Schwarz F. Fundamental role of C1q in autoimmunity and inflammation. Immunol Res, 2015, 63(1-3):101-106.
doi: 10.1007/s12026-015-8705-6 |
[42] |
Kanatsu-Shinohara M, Ogonuki N, Matoba S, Ogura A, Shinohara T. Autologous transplantation of spermatogonial stem cells restores fertility in congenitally infertile mice. Proc Natl Acad Sci USA, 2020, 117(14):7837-7844.
doi: 10.1073/pnas.1914963117 |
[43] |
Lord T, Nixon B. Metabolic changes accompanying spermatogonial stem cell differentiation. Dev Cell, 2020, 52(4):399-411.
doi: 10.1016/j.devcel.2020.01.014 |
[44] |
Park MH, Park JE, Kim MS, Lee KY, Hwang JY, Yun JI, Choi JH, Lee E, Lee ST. Effects of extracellular matrix protein-derived signaling on the maintenance of the undifferentiated state of spermatogonial stem cells from porcine neonatal testis. Asian-Australas J Anim Sci, 2016, 29(10):1398-1406.
doi: 10.5713/ajas.15.0856 |
[45] |
Shinohara T, Avarbock MR, Brinster RL. Beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci USA, 1999, 96(10):5504-5509.
doi: 10.1073/pnas.96.10.5504 |
[46] |
Domke LM, Rickelt S, Dörflinger Y, Kuhn C, Winter-Simanowski S, Zimbelmann R, Rosin-Arbesfeld R, Heid H, Franke WW. The cell-cell junctions of mammalian testes: I. The adhering junctions of the seminiferous epithelium represent special differentiation structures. Cell Tissue Res, 2014, 357(3):645-665.
doi: 10.1007/s00441-014-1906-9 pmid: 24907851 |
[47] |
Morimoto H, Ogonuki N, Kanatsu-Shinohara M, Matoba S, Ogura A, Shinohara T. Spermatogonial stem cell transplantation into nonablated mouse recipient testes. Stem Cell Reports, 2021, 16(7):1832-1844.
doi: 10.1016/j.stemcr.2021.05.013 pmid: 34143973 |
[48] |
Zhao ST, Zhu WW, Xue SP, Han DS. Testicular defense systems: immune privilege and innate immunity. Cell Mol Immunol, 2014, 11(5):428-437.
doi: 10.1038/cmi.2014.38 |
[49] |
Yule TD, Montoya GD, Russell LD, Williams TM, Tung KS. Autoantigenic germ cells exist outside the blood testis barrier. J Immunol, 1988, 141(4):1161-1167.
pmid: 3397538 |
[50] |
Setchell BP. The testis and tissue transplantation: historical aspects. J Reprod Immunol, 1990, 18(1):1-8.
pmid: 2213727 |
[51] |
Formosa LE, Ryan MT. Mitochondrial OXPHOS complex assembly lines. Nat Cell Biol, 2018, 20(5):511-513.
doi: 10.1038/s41556-018-0098-z pmid: 29662174 |
[52] |
Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, Nemirovski A, Shen-Orr S, Laevsky I, Amit M, Bomze D, Elena-Herrmann B, Scherf T, Nissim-Rafinia M, Kempa S, Itskovitz-Eldor J, Meshorer E, Aberdam D, Nahmias Y. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab, 2015, 21(3):392-402.
doi: 10.1016/j.cmet.2015.02.002 pmid: 25738455 |
[53] |
Voigt AL, Thiageswaran S, de Lima E Martins Lara N, Dobrinski I. Metabolic requirements for spermatogonial stem cell establishment and maintenance in vivo and in vitro. Int J Mol Sci, 2021, 22(4):1998.
doi: 10.3390/ijms22041998 |
[54] | Brinster RL, Troike DE. Requirements for blastocyst development in vitro. J Anim Sci, 1979, 49Suppl 2: 26-34. |
[55] |
Butcher L, Coates A, Martin KL, Rutherford AJ, Leese HJ. Metabolism of pyruvate by the early human embryo. Biol Reprod, 1998, 58(4):1054-1056.
pmid: 9546739 |
[56] |
Gardner DK, Lane M, Stevens J, Schoolcraft WB. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil Steril, 2001, 76(6):1175-1180.
pmid: 11730746 |
[57] |
Leese HJ, Barton AM. Pyruvate and glucose uptake by mouse ova and preimplantation embryos. J Reprod Fertil, 1984, 72(1):9-13.
pmid: 6540809 |
[58] |
Leese HJ. Metabolism of the preimplantation embryo: 40 years on. Reproduction, 2012, 143(4):417-427.
doi: 10.1530/REP-11-0484 |
[59] | Tischler J, Gruhn WH, Reid J, Allgeyer E, Buettner F, Marr C, Theis F, Simons BD, Wernisch L, Surani MA. Metabolic regulation of pluripotency and germ cell fate through α-ketoglutarate. EMBO J, 2019, 38(1):e99518. |
[60] |
Yoshida S. Open niche regulation of mouse spermatogenic stem cells. Dev Growth Differ, 2018, 60(9):542-552.
doi: 10.1111/dgd.12574 |
[61] |
Hayashi Y, Otsuka K, Ebina M, Igarashi K, Takehara A, Matsumoto M, Kanai A, Igarashi K, Soga T, Matsui Y. Distinct requirements for energy metabolism in mouse primordial germ cells and their reprogramming to embryonic germ cells. Proc Natl Acad Sci USA, 2017, 114(31):8289-8294.
doi: 10.1073/pnas.1620915114 |
[62] | Voigt AL, Kondro DA, Powell D, Valli-Pulaski H, Ungrin M, Stukenborg JB, Klein C, Lewis IA, Orwig KE, Dobrinski I. Unique metabolic phenotype and its transition during maturation of juvenile male germ cells. FASEB J, 2021, 35(5):e21513. |
[63] |
Sohni A, Tan K, Song HW, Burow D, de Rooij DG, Laurent L, Hsieh TC, Rabah R, Hammoud SS, Vicini E, Wilkinson MF. The neonatal and adult human testis defined at the single-cell level. Cell Rep, 2019, 26(6): 1501-1517.e4.
doi: 10.1016/j.celrep.2019.01.045 |
[1] | 时文睿, 渠鸿竹, 方向东. 痛风的多组学研究进展[J]. 遗传, 2023, 45(8): 643-657. |
[2] | 韩熙, 罗富成. 单细胞转录组测序在少突胶质谱系细胞异质性与神经系统疾病中的应用[J]. 遗传, 2023, 45(3): 198-211. |
[3] | 余志鑫, 李鹏宇, 李凯, 缪时英, 王琳芳, 宋伟. 精原干细胞微环境研究进展[J]. 遗传, 2022, 44(12): 1103-1116. |
[4] | 骆红波, 曹鹏博, 周钢桥. DNA甲基化驱动的转录表达特征作为肝癌预后预测标志物的价值[J]. 遗传, 2020, 42(8): 775-787. |
[5] | 赵鑫,杨化强. 大动物精原干细胞研究进展[J]. 遗传, 2019, 41(8): 686-702. |
[6] | 石田培,张莉. 全转录组学在畜牧业中的应用[J]. 遗传, 2019, 41(3): 193-205. |
[7] | 张高华, 于树涛, 王鹤, 王旭达. 高油酸花生发芽期低温胁迫转录组及差异表达基因分析[J]. 遗传, 2019, 41(11): 1050-1059. |
[8] | 陈家辉, 任学义, 李丽敏, 卢诗意, 程湉, 谭量天, 梁少东, 何丹林, 罗庆斌, 聂庆华, 张细权, 罗文. 转录组测序揭示细胞周期通路参与鸡腹脂沉积[J]. 遗传, 2019, 41(10): 962-973. |
[9] | 任岚,肖茹丹,张倩,娄晓敏,张昭军,方向东. KLF1和KLF9对K562细胞红系分化的协同调控作用[J]. 遗传, 2018, 40(11): 998-1006. |
[10] | 杨莹,陈宇晟,孙宝发,杨运桂. RNA甲基化修饰调控和规律[J]. 遗传, 2018, 40(11): 964-976. |
[11] | 刘亚军,张峰,刘宏德,孙啸. 下一代测序技术在干细胞转录调控研究中的应用[J]. 遗传, 2017, 39(8): 717-725. |
[12] | 叶仲杰,刘启鹏,岑山,李晓宇. LINE-1编码的逆转录酶在肿瘤形成过程中的作用[J]. 遗传, 2017, 39(5): 368-376. |
[13] | 魏凯,马磊. 高通量测序时代下持家基因定义的发展[J]. 遗传, 2017, 39(2): 127-134. |
[14] | 李光奇, 孙从佼, 吴桂琴, 石凤英, 刘爱巧, 孙皓, 杨宁. 利用转录组测序筛选鸡蛋褐壳性状相关基因[J]. 遗传, 2017, 39(11): 1102-1111. |
[15] | 刘永明, 张玲, 邱涛, 赵卓凡, 曹墨菊. 高通量转录组测序技术在植物雄性不育研究中的应用[J]. 遗传, 2016, 38(8): 677-687. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: