[1] Kaminsky ZA, Tang T, Wang S-C, Ptak C, Oh GHT, Wong AHC, Feldcamp LA, Virtanen C, Halfvarson J, Tysk C, McRae AF, Visscher PM, Montgomery GW, Gottesman II, Martin NG, Petronis A. DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet, 2009, 41(2): 240–245.
[2] Kouzarides T. Chromatin modifications and their function. Cell, 2007, 128(4): 693–705.
[3] Sims III1 RJ, Nishioka K, Reinberg D. Histone lysine methylation: a signature for chromatin function. Trends Genet, 2003, 19(11): 629–638.
[4] Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 2000, 406(6796): 593–599.
[5] Van Leeuwen F, Gafken PR, Gottschling DE. Dot1p modulates silencing in yeast by methylation of the nu-cleosome core. Cell, 2002, 109(6): 745–756.
[6] Shi Y, Whetstine JR. Dynamic regulation of histone lysine methylation by demethylases. Mol Cell, 2007, 25(1): 1–14.
[7] Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol, 2007, 8(4): 307–318.
[8] Swigut T, Wysocka1 J. H3K27 demethylases, at long last. Cell, 2007, 131(1): 29–32. [9] Laribee RN, Krogan NJ, Xiao T, Shibata Y, Hughes TR, Greenblatt JF, Strahl BD. BUR kinase selectively regulates H3-K4 trimethylation and H2B ubiquitylation through re-cruitment of the PAF elongation complex. Curr Biol, 2005, 15(16): 1487–1493.
[10] Tan XG, Rotllan J, Li HQ, DeDeyne P, Du SJ. SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc Natl Acad Sci USA, 2006, 8(103): 2713–2718.
[11] Fulcoli FG, Huynh T, Scambler PJ, Baldini A. Tbx1 regulates the BMP-Smad1 pathway in a transcription independent manner. PLoS ONE, 2009, 4(6): 1371–1384.
[12] Miller SA, Huang AC, Miazgowicz MM, Brassil MM, Weinmann AS. Coordinated but physically separable interac-tion with H3K27-demethylase and H3K4-methyltransferase activities are required for T-box protein-mediated activa-tion of developmental gene expression. Genes Dev, 2008, 22(21): 2980–2993.
[13] Lange M, Kaynak B, Forster UB, Tönjes M, Fischer JJ, Grimm C, Schlesinger J, Just S, Dunkel I, Krueger T, Mebus S, Lehrach H, Lurz R, Gobom J, Rottbauer W, Abdelilah-Seyfried S, Sperling S. Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAFchromatin remodeling complex. Genes Dev, 2008, 22(17): 2370–2384.
[14] Stow LR, Gumz ML, Lynch IJ, Greenlee MM, Rudin A, Cain BD, Wingo CS. Aldosterone modulates steroid re-ceptor binding to the endothelin-1 gene (Edn 1). J Biol Chem, 2009, 284(44): 1–20.
[15] Fan ZP, Yamaza T, Lee JS. BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol, 2009, 11(8): 1002–1010.
[16] Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science, 2001, 292(5514): 110–113.
[17] Stewart DR, Kleefstra T. The chromosome 9q subtelomere deletion syndrome. Am J Med Genet Part C (Seminars Med Genet), 2007, 145(4): 383–392.
[18] Kleefstra T, Brunner HG, Amiel J. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Human Genet, 2006, 79(2): 370–378.
[19] Bikoff EK, Morgan MA, Robertson EJ. An expanding job description for Blimp-1/PRDM1. Genet Dev, 2009, 19(4): 1–7.
[20] Lee Y, Song AJ, Baker R, Micales B. Jumonji, a nuclear protein that is necessaryfor normal heart development. Circ Res, 2000, 86(9): 932–938.
[21] Cloos PA, Christensen J, Agger K, Helin K. Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev, 2008, 22(9): 1115–1140.
[22] Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev, 2006, 20(9): 1123–1136.
[23] Weston AD, Ozolins TRS, Brown NA. Thoracic skeletal defects and cardiac malformations: A common epigenetic link? Birth Defects Res (Part C), 2006, 78(4): 354–370.
[24] Jepsen K, Gleiberman AS, Shi C, Simon DI, Rosenfeld MG. Cooperative regulation in development by SMRT and FOXP1. Genes Dev, 2008, 22(6): 740–745.
[25] Jepsen K, Solum D, Zhou TY, McEvilly RJ, Kim H-J, Glass CK, Hermanson O, Rosenfeld MG. SMRT-mediated repression of an H3K27 demethylasein progression from neural stem cell to neuron. Nature, 2007, 450(期): 415–420.
[26] Bannister AJ, Schneider R, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T. Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J Biol Chem, 2005, 280(18): 17732–17736.
[27] Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V, Richards DP, Beattie BK, Emili A, Boone C, Shilatifard A, Buratowski S, Greenblatt J. Methyla-tion of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol, 2003, 23(12): 4207–4218.
[28] Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ, Kaneda Y. A histone H3 lysine 36 trimethyl-transferase links Nkx2-5 to Wolf–Hirschhorn syndrome. Nature, 2009, 460(7252): 287–292.
[29] Frederiks F, Tzouros M, Oudgenoeg G. Nonprocessive methylation by Dot1 leads to functional redundancy of histone H3K79 methylation states. Nat Struct Mol Biol, 2008, 15(6): 550–557.
[30] Barry ER, Krueger W, Jakuba CM. ES Cell cycle progression and differentiation require the action of the histone methyl-transferase Dot1L. Stem Cell, 2009, 27(7): 1538–1547.
[31] Illi B, Scopece A, Nanni S, Farsetti S, Morgante L, Big-lioli P, Capogrossi MC, Gaetano C. Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress. Circ Res, 2005, 3(18): 501–508.
[32] Lennartsson A, Ekwall K. Histone modification patterns and epigenetic codes. Biochim Biophys Acta, 2009, 1790(9): 863–868.
[33] Tatton-Brown K, Rahman N. Clinical features of NSD1-positive soto syndrome. Clin Dysmorphol, 2004, 13(4): 199–204.
[34] Rayasam GV, Wendling Q, Angrand PO, Mark M, Niederreither K, Song LY, Lerouge T, Hager GL, Chambon P, Losson R. NSD1 is essential for early post-implantation development and has a catalytically ac-tive SET domain. EMBO J, 2003, 22(12): 3153–3163. |