[1] Lachner M, Jenuwein T. The many faces of histone lysine methylation. Curr Opin Cell Biol, 2002, 14(3): 286-298.[2] Suganuma T, Workman JL. Crosstalk among histone modifications. Cell, 2008, 135(4): 604-607.[3] Khalil AM, Boyar FZ, Driscoll DJ. Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis. Proc Natl Acad Sci USA, 2004, 101(47): 16583-16587.[4] Godmann M, Auger V, Ferraroni-Aguiar V, Di Sauro A, Sette C, Behr R, Kimmins S. Dynamic regulation of histone H3 methylation at lysine 4 in mammalian spermato-genesis. Biol Reprod, 2007, 77(5): 754-764.[5] Payne C, Braun RE. Histone lysine trimethylation exhibits a distinct perinuclear distribution in Plzf-expressing spermatogonia. Dev Biol, 2006, 293(2): 461-472.[6] Glaser S, Lubitz S, Loveland KL, Ohbo K, Robb L, Schwenk F, Seibler J, Roellig D, Kranz A, Anastassiadis K, Stewart AF. The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenetics Chromatin, 2009, 2(1): 5.[7] Carrell DT, Hammoud SS. The human sperm epigenome and its potential role in embryonic development. Mol Hum Reprod, 2010, 16(1): 37-47.[8] Shi YJ, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 2004, 119(7): 941-953.[9] Lee MG, Wynder C, Cooch N, Shiekhattar R. An essential role for CoREST in nucleosomal histone 3 lysine 4 de-methylation. Nature, 2005, 437(7075): 432-435.[10] Katz DJ, Edwards TM, Reinke V, Kelly WG. A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell, 2009, 137(2): 308-320.[11] Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature, 2007, 450(7166): 119-123.[12] O’Carroll D, Scherthan H, Peters AHFM, Opravil S, Haynes AR, Laible G, Rea S, Schmid M, Lebersorger A, Jerratsch M, Sattler L, Mattei MG, Denny P, Brown SDM, Schweizer D, Jenuwein T. Isolation and characterization of Suv39h2, a second histone H3 methyltrans-ferase gene that displays testis-specific expression. Mol Cell Biol, 2000, 20(24): 9423-9433.[13] Peters AHFM, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T. Loss of the Suv39h histone methyl-transferases impairs mammalian heterochromatin and genome stability. Cell, 2001, 107(3): 323-337.[14] Godmann M, Lambrot R, Kimmins S. The dynamic epigenetic program in male germ cells: Its role in spermato-genesis, testis cancer, and its response to the environment. Microsc Res Techniq, 2009, 72(8): 603-619.[15] Tachibana M, Sugimoto K, Fukushima T, Shinkai Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem, 2001, 276(27): 25309-25317.[16] Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H, Shinkai Y. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev, 2002, 16(14): 1779-1791.[17] Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T, Shinkai Y. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev, 2005, 19(7): 815-826.[18] Tachibana M, Nozaki M, Takeda N, Shinkai Y. Functional dynamics of H3K9 methylation during meiotic prophase progression. EMBO J, 2007, 26(14): 3346-3359.[19] Di Stefano L, Ji JY, Moon NS, Herr A, Dyson N. Mutation of Drosophila Lsd1 disrupts H3-K4 methylation, resulting in tissue-specific defects during development. Curr Biol, 2007, 17(9): 808-812.[20] Hayashi K, Yoshida K, Matsui Y. A histone H3 methyl-transferase controls epigenetic events required for meiotic prophase. Nature, 2005, 438(7066): 374-378.[21] Kashuba V, Protopopov A, Podowski R, Gizatullin R, Li JF, Klein G, Wahlestedt C, Zabarovsky E. Isolation and chromosomal localization of a new human retinoblastoma binding protein 2 homologue 1a (RBBP2H1A). Eur J Hum Genet, 2000, 8(6): 407-413.[22] Madsen B, Tarsounas M, Burchell JM, Hall D, Poulsom R, Taylor-Papadimitriou J. PLU-1, a transcriptional repressor and putative testis-cancer antigen, has a specific expression and localization pattern during meiosis. Chromosoma, 2003, 112(3): 124-132.[23] Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the Core Histone Tails. Genes Dev, 2001, 15(18): 2343-2360.[24] Christensen ME, Rattner JB, Dixon GH. Hyperacetylation of histone H4 promotes chromatin decondensation prior to histone replacement by protamines during spermatogenesis in rainbow trout. Nucleic Acids Res, 1984, 12(11): 4575-4592.[25] Grimes SR Jr, Henderson N. Hyperacetylation of histone H4 in rat testis spermatids. Exp Cell Res, 1984, 152(1): 91-97.[26] Hazzouri M, Pivot-Pajot C, Faure AK, Usson Y, Pelletier R, Sèle B, Khochbin S, Rousseaux S. Regulated hyper-acetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol, 2000, 79(12): 950-960.[27] Lahn BT, Tang ZL, Zhou JX, Barndt RJ, Parvinen M, Allis CD, Page DC. Previously uncharacterized histone acetyltransferases implicated in mammalian spermato-genesis. Proc Natl Acad Sci USA, 2002, 99(13): 8707-8712.[28] Sonnack V, Failing K, Bergmann M, Steger K. Expression of hyperacetylated histone H4 during normal and impaired human spermatogenesis. Andrologia, 2002, 34(6): 384-390.[29] Fenic I, Sonnack V, Failing K, Bergmann M, Steger K. In vivo effects of histone-deacetylase inhibitor trichostatin-A on murine spermatogenesis. J Androl, 2004, 25(5): 811-818.[30] Fenic I, Hossain HM, Sonnack V, Tchatalbachev S, Thierer F, Trapp J, Failing K, Edler KS, Bergmann M, Jung M, Chakraborty T, Steger K. In vivo application of histone deacetylase inhibitor trichostatin-a impairs murine male meiosis. J Androl, 2008, 29(2): 172-185.[31] An W. Histone acetylation and methylation: combinatorial players for transcriptional regulation. Subcell Biochem, 2007, 41: 351-369.[32] Kurtz K, Martínez-Soler F, Ausió J, Chiva M. Acetylation of histone H4 in complex structural transitions of spermiogenic chromatin. J Cell Biochem, 2007, 102(6): 1432-1441.[33] Jenuwein T, Allis CD. Translating the histone code. Science, 2001, 293(5532): 1074-1080.[34] Aherne GW, Rowlands MG, Stimson L, Workman P. As-says for the identification and evaluation of histone ace-tyltransferase inhibitors. Methods, 2002, 26(3): 245-253.[35] Gray SG, Ekström TJ. The human histone deacetylase family. Exp Cell Res, 2001, 262(2): 75-83.[36] 葛少钦, 段斐, 康现江, 赵梦然. 精子发生过程中组蛋白H4乙酰化修饰. 生命的化学, 2009, 29(2): 272-274.[37] Nair M, Nagamori I, Sun P, Mishra DP, Rhéaume C, Li BA, Sassone-Corsi P, Dai X. Nuclear regulator Pygo2 controls spermiogenesis and histone H3 acetylation. Dev Biol, 2008, 320(2): 446-455.[38] McGraw S, Morin G, Vigneault C, Leclerc P, Sirard MA. Investigation of MYST4 histone acetyltransferase and its involvement in mammalian gametogenesis. BMC Dev Biol, 2007, 7(1): 123.[39] Lu S, Xie YM, Li X, Luo J, Shi XQ, Hong X, Pan YH, Ma X. Mass spectrometry analysis of dynamic post-translational modifications of TH2B during spermatogenesis. Mol Hum Reprod, 2009, 15(6): 373-378.[40] Bhaskara S, Chyla BJ, Amann JM, Knutson SK, Cortez D, Sun ZW, Hiebert SW. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell, 2008, 30(1): 61-72.[41] Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi XX, Hill JA, Richardson JA, Olson EN. His-tone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev, 2007, 21(14): 1790-1802.[42] Thomas T, Dixon MP, Kueh AJ, Voss AK. Mof (MYST1 or KAT8) is essential for progression of embryonic development past the blastocyst stage and required for normal chromatin architecture. Mol Cell Biol, 2008, 28(16): 5093-5105.[43] Vega RB, Matsuda K, Oh J, Barbosa AC, Yang XL, Meadows E, McAnally J, Pomajzl C, Shelton JM, Richardson JA, Karsenty G, Olson EN. Histone deacety-lase 4 controls chondrocyte hypertrophy during skeleto-genesis. Cell, 2004, 119(4): 555-566.[44] Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkühler C. HDACs, histone deacetylation and gene transcription: From molecular biology to cancer therapeutics. Cell Res, 2007, 17(3): 195-211.[45] Hildmann C, Riester D, Schwienhorst A. Histone deace-tylases—An important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol, 2007, 75(3): 487-497.[46] Hong CY, Gong EY, Kim K, Suh JH, Ko HM, Lee HJ, Choi HS, Lee K. Modulation of the expression and trans-activation of androgen receptor by the basic helix-loop-helix transcription factor Pod-1 through recruitment of histone deacetylase 1. Mol Endocrinol, 2005, 19(9): 2245-2257.[47] McBurney MW, Yang XF, Jardine K, Hixon M, Boekel-heide K, Webb JR, Lansdorp PM, Lemieux M. The mam-malian SIR2 alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol, 2003, 23(1): 38-54.[48] Zhang Y, Kwon S, Yamaguchi T, Cubizolles F, Rousseaux S, Kneissel M, Cao C, Li N, Cheng HL, Chua K, Lombard D, Mizeracki A, Matthias G, Alt FW, Khochbin S, Matthias P. Mice lacking histone deacetylase 6 have hyper-acetylated tubulin but are viable and develop normally. Mol Cell Biol, 2008, 28(5): 1688-1701.[49] Coussens M, Maresh JG, Yanagimachi R, Maeda G, All-sopp R. Sirt1 deficiency attenuates spermatogenesis and germ cell function. PLoS One, 2008, 3(2): e1571.[50] Kolthur-Seetharam U, Teerds K, de Rooij DG, Wendling O, McBurney M, Sassone-Corsi P, Davidson I. The his-tone deacetylase SIRT1 controls male fertility in mice through regulation of hypothalamic-pituitary gonadotropin signaling. Biol Reprod, 2009, 80(2): 384-391.[51] Li HZ, Rajendran GK, Liu NN, Ware C, Rubin BP, Gu YS. SirT1 modulates the estrogen-insulin-like growth factor-1 signaling for postnatal development of mammary gland in mice. Breast Cancer Res, 2007, 9(1): R1.[52] Bouras T, Fu MF, Sauve AA, Wang F, Quong AA, Perkins ND, Hay RT, Gu W, Pestell RG. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem, 2005, 280(11): 10264-10276.[53] Motta MC, Divecha N, Lemieux M, Kamel C, Chen DL, Gu W, Bultsma Y, McBurney M, Guarente L. Mammalian SIRT1 represses forkhead transcription factors. Cell, 2004, 116(4): 551-563.[54] Pivot-Pajot C, Caron C, Govin J, Vion A, Rousseaux S, Khochbin S. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol Cell Biol, 2003, 23(15): 5354-5365. |