遗传 ›› 2012, Vol. 34 ›› Issue (4): 389-400.doi: 10.3724/SP.J.1005.2012.00389
赵翔, 韩宝达, 李立新
收稿日期:
2011-10-18
修回日期:
2011-11-24
出版日期:
2012-04-20
发布日期:
2012-04-25
通讯作者:
李立新
E-mail:lixinli1@gmail.com
基金资助:
国家自然科学基金项目(编号:30840002, 30970223), 黑龙江省留学归国人员科学基金项目(编号:LC08C03), 中央高校基本科研业务费专项资金(编号:DL09DA02) , 东北林业大学引进人才科研启动金(编号:015-602042), 中国博士后科学基金特别资助(编号: 200902365)和黑龙江省留学人员科技活动项目择优资助(编号:2009-HLJLixinLi)
ZHAO Xiang, HAN Bao-Da, LI Li-Xin
Received:
2011-10-18
Revised:
2011-11-24
Online:
2012-04-20
Published:
2012-04-25
摘要: 大多数细胞内都包含靶向不同细胞器的各种运输囊泡, 其运输机制在进化上是高度保守的。Sec1/Munc- 18(SM)蛋白在膜泡运输中起着重要的调控作用,它能够与SNARE (Soluble N-ethylmaleimide-sensitive factor attachment protein receptor)蛋白结合, 共同在细胞内各个膜融合发生部位发挥重要作用。SM蛋白和SNARE复合体中的Syntaxin蛋白结合, 调节SNARE复合体的装配, 并与SNARE协同作用促进整个膜融合过程。文章对SM蛋白在结构和功能分析方面的最新研究进展进行了概述。
赵翔,韩宝达,李立新. SM蛋白在膜泡运输中的功能[J]. 遗传, 2012, 34(4): 389-400.
ZHAO Xiang, HAN Bao-Da, LI Li-Xin. Function of SM protein in vesicle transport[J]. HEREDITAS, 2012, 34(4): 389-400.
[1] Wickner W, Schekman R. Membrane fusion. Nat Struct Mol Biol, 2008, 15(7): 658- 664.[2] Bonifacino JS, Glick BS. The mechanisms of vesicle bud-ding and fusion. Cell, 2004, 116(2): 153-166.[3] Cai HQ, Reinisch K, Ferro-Novick S. Coats, tethers, rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell, 2007, 12(5): 671- 682.[4] Südhof TC, Rothman JE. Membrane fusion: Grappling with SNARE and SM proteins. Science, 2009, 323(5913): 474-477.[5] Robinson LJ, Martin TFJ. Docking and fusion in neurose-cretion. Curr Opin Cell Biol, 1998, 10(4): 483-492.[6] Hanson PI, Roth R, Morisaki H, Jahn R, Heuser JE. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/ deep-etch electron microscopy. Cell, 1997, 90(3): 523-535.[7] Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Söllner TH, Rothman JE. SNAREpins: minimal machinery for membrane fusion. Cell, 1998, 92(6): 759-772.[8] Brenner S. The genetics of Caenorhabditis elegans. Genetics, 1974, 77(1): 71-94.[9] Novick P, Field C, Schekman R. Identification of 23 com-plementation groups required for post-translational events in the yeast secretory pathway. Cell, 1980, 21(1): 205-215.[10] Hata Y, Slaughter CA, Südhof TC. Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature, 1993, 366(6453): 347-351.[11] Bracher A, Weissenhorn W. Crystal structures of neuronal squid Sec1 implicate inter-domain hinge movement in the release of t-SNAREs. J Mol Biol, 2001, 306(1): 7-13.[12] Bracher A, Weissenhorn W. Structural basis for the Golgi membrane recruitment of Sly1p by Sed5p. EMBO J, 2002, 21(22): 6114-6124.[13] Carr CM, Grote E, Munson M, Hughson FM, Novick PJ. Sec1p binds to SNARE complexes and concentrates at sites of secretion. J Cell Biol, 1999, 146(2): 333-344.[14] Novick P, Schekman R. Secretion and cell-surface growth are blocked in a temperature- sensitive mutant of Sac-charomyces cerevisiae. Proc Natl Acad Sci USA, 1979, 76(4): 1858- 1862.[15] Ossig R, Dascher C, Trepte HH, Schmitt HD, Gallwitz D. The yeast SLY gene products, suppressors of defects in the essential GTP-binding Ypt1 protein, may act in endo-plasmic reticulum-to-Golgi transport. Mol Cell Biol, 1991, 11(6): 2980-2993.[16] Dascher C, Ossig R, Gallwitz D, Schmitt HD. Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPT1, a member of the RAS superfamily. Mol Cell Biol, 1991, 11(2): 872-885.[17] Lupashin VV, Waters MG. t-SNARE activation through transient interaction with a rab-like guanosine triphosphatase. Science, 1997, 276(5316): 1255-1258.[18] Dulubova I, Yamaguchi T, Wang Y, Südhof TC, Rizo J. Vam3p structure reveals conserved and divergent properties of syntaxins. Nat Struct Biol, 2001, 8(3): 258-264.[19] Banta LM, Vida TA, Herman PK, Emr SD. Characterization of yeast Vps33p, a protein required for vacuolar protein sorting and vacuole biogenesis. Mol Cell Biol, 1990, 10(9): 4638- 4649.[20] Cowles CR, Emr SD, Horazdovsky BF. Mutations in the VPS45 gene, a SEC1 homologue, result in vacuolar protein sorting defects and accumulation of membrane vesicles. J Cell Sci, 1994, 107(12): 3449-3459.[21] Bryant NJ, James DE. Vps45p stabilizes the syntaxin homologue Tlg2p and positively regulates SNARE com-plex formation. EMBO J, 2001, 20(13): 3380-3388.[22] Webb GC, Hoedt M, Poole LJ, Jones EW. Genetic inter-actions between a pep7 mutation and the PEP12 and VPS45 genes: evidence for a novel SNARE component in transport between the Saccharomyces cerevisiae Golgi complex and endosome. Genetics, 1997, 147(2): 467- 478.[23] Nichols BJ, Holthuis JC, Pelham HRB. The See1p homo-logue Vps45p binds to the syntaxin Tlg2p. Eur J Cell Biol, 1998, 77(4): 263-268.[24] Schulze KL, Littleton JT, Salzberg A, Halachmi N, Stern M, Lev Z, Bellen HJ. Rop, a Drosophila homolog of yeast Sec1 and vertebrate n-Sect/Munc-18 proteins, is a negative regulator of neurotransmitter release in vivo. Neuron, 1994, 13(5): 1099-1108.[25] Harrison SD, Broadie K, van de Goor J, Rubin GM. Muta-tions in the Drosophila Rop gene suggest a function in general secretion and synaptic transmission. Neuron, 1994, 13 (3): 555-566.[26] Wu MN, Schulze KL, Lloyd TE, Bellen HJ. The ROP- syntaxin interaction inhibits neurotransmitter release. Eur J Cell Biol, 2001, 80(2): 196-199.[27] Littleton JT. A genomic analysis of membrane trafficking and neurotransmitter release in Drosophila. J Cell Biol, 2000, 150(2): F77-F82.[28] Sevrioukov EA, He JP, Moghrabi N, Sunio A, Krämer H. A role for the deep orange and carnation eye color genes in lysosomal delivery in Drosophila. Mol Cell, 1999, 4(4): 479- 486.[29] Sassa T, Harada SI, Ogawa H, Rand JB, Maruyama IN, Hosono R. Regulation of the UNC-18- Caenorhabditis elegans syntaxin complex by UNC-13. J Neuro-sci, 1999, 19(12): 4772- 4777.[30] Hosono R, Hekimi S, Kamiya Y, Sassa T, Murakami S, Nishiwaki K, Miwa J, Taketo A, Kodaira KI. The unc-18 gene encodes a novel protein affecting the kinetics of acetylcholine metabolism in the nematode Caenorhabditis elegans. J Neurochem, 1992, 58(4): 1517-1525.[31] Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, Vermeer H, Toonen RF, Hammer RE, van den Berg TK, Missler M, Geuze HJ, Südhof TC. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science, 2000, 287(5454): 864-869.[32] Riento K, Kauppi M, Keranen S, Olkkonen VM. Munc18- 2, a functional partner of syntaxin 3, controls apical membrane trafficking in epithelial cells. J Biol Chem, 2000, 275(18): 13476-13483.[33] Riento K, Jäntti J, Jansson S, Hielm S, Lehtonen E, Ehnholm C, Keränen S, Olkkonen VM. A sec1-related vesicle-transport protein that is expressed predominantly in epithelial cells. Eur J Biochem, 1996, 239(3): 638-646.[34] Thurmond DC, Ceresa BP, Okada S, Elmendorf JS, Coker K, Pessin JE. Regulation of insulin- stimulated GLUT4 translocation by Munc18c in 3T3L1 adipocytes. J Biol Chem, 1998, 273(50): 33876-33883.[35] Thurmond DC, Kanzaki M, Khan AH, Pessin JE. Munc18c function is required for insulin- stimulated plasma mem-brane fusion of GLUT4 and insulin-responsive amino peptidase storage vesicles. Mol Cell Biol, 2000, 20(1): 379-388.[36] Dulubova I, Yamaguchi T, Gao Y, Min SW, Huryeva I, Südhof TC, Rizo J. How Tlg2p/syntaxin 16 ‘snares’ Vps45. EMBO J, 2002, 21(14): 3620-3631.[37] Tellam JT, James DE, Stevens TH, Piper RC. Identification of a mammalian Golgi Sec1p-like protein, mVps45. J Biol Chem, 1997, 272(10): 6187-6193.[38] Yamaguchi T, Dulubova I, Min SW, Chen XC, Rizo J, Südhof TC. Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. Dev Cell, 2002, 2(3): 295-305.[39] Dascher C, Balch WE. Mammalian Sly1 regulates syn-taxin 5 function in endoplasmic reticulum to Golgi trans-port. J Biol Chem, 1996, 271(27): 15866-15869.[40] Assaad FF, Huet Y, Mayer U, Jürgens G. The cytokinesis gene KEULE encodes a Sec1 protein that binds the syntaxin Knolle. J Cell Biol, 2001, 152(3): 531-543.[41] Assaad FF, Mayer U, Wanner G, Jürgens G. The KEULE gene is involved in cytokinesis in Arabidopsis. Mol Gen Genet, 1996, 253(3): 267-277.[42] Bassham DC, Sanderfoot AA, Kovaleva V, Zheng HY, Raikhel NV. AtVPS45 complex formation at the trans- Golgi network. Mol Biol Cell, 2000, 11(7): 2251-2265.[43] Zouhar J, Rojo E, Bassham DC. AtVPS45 Is a positive regulator of the SYP41/SYP61/VTI12 SNARE complex involved in trafficking of vacuolar cargo. Plant Physiol, 2009, 149(4): 1668 -1678.[44] Rojo E, Zouhar J, Kovaleva V, Hong S, Raikhel NV. The AtC-VPS protein complex is localized to the tonoplast and the prevacuolar compartment in Arabidopsis. Mol Biol Cell, 2003, 14 (2): 361-369.[45] Hamdan FF, Gauthier J, Dobrzeniecka S, Lortie A, Mottron L, Vanasse M, D'Anjou G, Lacaille JC, Rouleau GA, Michaud JL. Intellectual disability without epilepsy associated with STXBP1 disruption. Eur J Hum Genet, 2011, 19(5): 607-609.[46] Deprez L, Weckhuysen S, Holmgren P, Suls A, Van Dyck T, Goossens D, Del-Favero J, Jansen A, Verhaert K, Lagae L, Jordanova A, Van Coster R, Yendle S, Berkovic SF, Scheffer I, Ceulemans B, De Jonghe P. Clinical spectrum of early-onset epileptic encephalopathies associated with STXBP1 mutations. Neurology, 2010, 75(13): 1159-1165.[47] Brochetta C, Vita F, Tiwari N, Scandiuzzi L, Soranzo MR, Guérin-Marchand C, Zabucchi G, Blank U. Involvement of Munc18 isoforms in the regulation of granule exocyto-sis in neutrophils. Biochim Biophys Acta, 2008, 1783(10): 1781-1791.[48] Côte M, Ménager MM, Burgess A, Mahlaoui N, Picard C, Schaffner C, Al-Manjomi F, Al-Harbi M, Alangari A, Le Deist F, Gennery AR, Prince N, Cariou A, Nitschke P, Blank U, El-Ghazali G, Ménasché G, Latour S, Fischer A, de Saint Basile G. Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J Clin Invest, 2009, 119(12): 3765-3773.[49] Reed GL, Houng AK, Fitzgerald ML. Human platelets contain SNARE proteins and a Sec1p homologue that in-teracts with syntaxin 4 and is phosphorylated after throm-bin activation: implications for platelet secretion. Blood, 1999, 93(8): 2617-2626.[50] Brochetta C, Vita F, Tiwari N, Scandiuzzi L, Soranzo MR, Guérin-Marchand C, Zabucchi G, Blank U. Involvement of Munc18 isoforms in the regulation of granule exocytosis in neutrophils. Biochim Biophys Acta, 2008, 1783(10): 1781-1791.[51] Gissen P, Johnson CA, Morgan NV, Stapelbroek JM, Forshew T, Cooper WN, McKiernan PJ, Klomp LWJ, Morris AAM, Wraith JE, McClean P, Lynch SA, Thomp-son RJ, Lo B, Quarrell OW, Di Rocco M, Trembath RC, Mandel H, Wali S, Karet FE, Knisely AS, Houwen RHJ, Kelly DA, Maher ER. Mutations in VPS33B, en-coding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis- renal dysfunction-cholestasis (ARC) syndrome. Nat Genet, 2004, 36(4): 400-404.[52] Lo B, Li L, Gissen P, Christensen H, McKiernan PJ, Ye C, Abdelhaleem M, Hayes JA, Williams MD, Chitayat D, Kahr WHA. Requirement of VPS33B, a member of the Sec1/Munc18 protein family, in megakaryocyte and platelet α-granule biogenesis. Blood, 2005, 106(13): 4159-4166.[53] Gengyo-Ando K, Kitayama H, Mukaida M, Ikawa Y. A murine neural-specific homolog corrects cholinergic defects in Caenorhabditis elegans unc-18 mutants. J Neurosci, 1996, 16 (21): 6695-6702.[54] Araç D, Dulubova I, Pei JM, Huryeva I, Grishin NV, Rizo J. Three-dimensional structure of the rSly1 N-terminal domain reveals a conformational change induced by bind-ing to syntaxin 5. J Mol Biol, 2005, 346(2): 589-601.[55] Koumandou VL, Dacks JB, Coulson RMR, Field MC. Control systems for membrane fusion in the ancestral eu-karyote; evolution of tethering complexes and SM proteins. BMC Evol Biol, 2007, 7: 29.[56] Hashizume K, Cheng YS, Hutton JL, Chiu CH, Carr CM. Yeast Sec1p functions before and after vesicle docking. Mol Biol Cell, 2009, 20(22): 4673-4685.[57] Peng RW. Decoding the interactions of SM proteins with SNAREs. Sci World J, 2005, 5: 471-477.[58] Pevsner J, Hsu SC, Braun JEA, Calakos N, Ting AE, Bennett MK, Scheller RH. Specificity and regulation of a synaptic vesicle docking complex. Neuron, 1994, 13(2): 353-361.[59] Dulubova I, Sugita S, Hill S, Hosaka M, Fernandez I, Südhof TC, Rizo J. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J, 1999, 18(16): 4372-4382.[60] Fernandez I, Ubach J, Dulubova I, Zhang XY, Südhof TC, Rizo J. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell, 1998, 94(6): 841- 849.[61] Kosodo Y, Noda Y, Adachi H, Yoda K. Binding of Sly1 to Sed5 enhances formation of the yeast early Golgi SNARE complex. J Cell Sci, 2002, 115(18): 3683-3691.[62] Munson M, Chen X, Cocina AE, Schultz SM, Hughson FM. Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly. Nat Struct Biol, 2000, 7(10): 894-902.[63] Coe JGS, Lim ACB, Xu J, Hong WJ. A role for Tlg1p in the transport of proteins within the Golgi apparatus of Saccharomyces cerevisiae. Mol Biol Cell, 1999, 10(7): 2407-2423.[64] Sato TK, Rehling P, Peterson MR, Emr SD. Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. Mol Cell, 2000, 6(3): 661- 671.[65] Toonen RFG, Verhage M. Vesicle trafficking: pleasure and pain from SM genes. Trends Cell Biol, 2003, 13(4): 177-186.[66] Gallwitz D, Jahn R. The riddle of the Sec1/Munc-18 proteins-new twists added to their interactions with SNAREs. Trends Biochem Sci, 2003, 28(3): 113-116.[67] Burkhardt P, Hattendorf DA, Weis WI, Fasshauer D. Munc18a controls SNARE assembly through its interaction with the syntaxin N-peptide. EMBO J, 2008, 27(7): 923-933.[68] Furgason MLM, MacDonald C, Shanks SG, Ryder SP, Bryant NJ, Munson M. The N-terminal peptide of the syntaxin Tlg2p modulates binding of its closed conformation to Vps45p. Proc Natl Acad Sci USA, 2009, 106(34): 14303-14308.[69] Piper RC, Whitters EA, Stevens TH. Yeast Vps45p is a Sec1p-like protein required for the consumption of vacu-ole-targeted, post-Golgi transport vesicles. Eur J Cell Biol, 1994, 65 (2): 305-318.[70] Peterson MR, Emr SD. The class c vps complex functions at multiple stages of the vacuolar transport pathway. Traffic, 2001, 2(7): 476-486.[71] Rieder SE, Emr SD. A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole. Mol Biol Cell, 1997, 8(11): 2307-2327.[72] Cao XC, Ballew N, Barlowe C. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J, 1998, 17(8): 2156-2165.[73] Bergmann DC. SECuring the perimeter. Trends Plant Sci, 2001, 6(6): 235-237.[74] Graham ME, Sudlow AW, Burgoyne RD. Evidence against an acute inhibitory role of nSec-1 (munc-18) in late steps of regulated exocytosis in chromaffin and PC12 cells. J Neurochem, 1997, 69(6): 2369-2377.[75] Voets T, Toonen RF, Brian EC, de Wit H, Moser T, Rettig J, Südhof TC, Neher E, Verhage M. Munc18-1 promotes large dense-core vesicle docking. Neuron, 2001, 31(4): 581-591.[76] Riento K, Galli T, Jansson S, Ehnholm C, Lehtonen E, Olkkonen VM. Interaction of Munc-18-2 with syntaxin 3 controls the association of apical SNAREs in epithelial cells. J Cell Sci, 1998, 111(17): 2681-2688.[77] Dresbach T, Burns ME, O'Connor V, DeBello WM, Betz H, Augustine GJ. A neuronal Sec1 homolog regulates neuro-transmitter release at the squid giant synapse. J Neu-rosci, 1998, 18(8): 2923-2932.[78] Schoch S, Deák F, Königstorfer A, Mozhayeva M, Sara Y, Südhof TC, Kavalali ET. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science, 2001, 294(5544): 1117- 1122.[79] Wu MN, Littleton JT, Bhat MA, Prokop A, Bellen HJ. ROP, the Drosophila Sec1 homolog, interacts with syn-taxin and regulates neurotransmitter release in a dos-age-dependent manner. EMBO J, 1998, 17(1): 127-139.[80] Rowe J, Calegari F, Taverna E, Longhi R, Rosa P. Syn-taxin 1A is delivered to the apical and basolateral domains of epithelial cells: the role of munc-18 proteins. J Cell Sci, 2001, 114(18): 3323-3332.[81] Yang CM, Coker KJ, Kim JK, Mora S, Thurmond DC, Davis AC, Yang BL, Williamson RA, Shulman GI, Pessin JE. Syntaxin 4 heterozygous knockout mice develop mus-cle insulin resistance. J Clin Invest, 2001, 107(10): 1311-1318.[82] Peng RW, Gallwitz D. Sly1 protein bound to Golgi syn-taxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes. J Cell Biol, 2002, 157(4): 645- 655.[83] Grote E, Carr CM, Novick PJ. Ordering the final events in yeast exocytosis. J Cell Biol, 2000, 151(2): 439-452.[84] de Wit H, Walter AM, Milosevic I, Gulyás-Kovács A, Riedel D, Sørensen JB, Verhage M. Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes. Cell, 2009, 138(5): 935-946.[85] Fisher RJ, Pevsner J, Burgoyne RD. Control of fusion pore dynamics during exocytosis by Munc18. Science, 2001, 291(5505): 875-878.[86] Pieren M, Schmidt A, Mayer A. The SM protein Vps33 and the t-SNARE Habc domain promote fu-sion pore opening. Nat Struct Mol Biol, 2010, 17(6): 710-717.[87] Xu Y, Su LJ, Rizo J. Binding of Munc18-1 to synaptobrevin and to the SNARE four-helix bundle. Biochemistry, 2010, 49(8): 1568-1576.[88] Carr CM, Rizo J. At the junction of SNARE and SM pro-tein function. Curr Opin Cell Biol, 2010, 22(4): 488-495.[89] Mima J, Hickey CM, Xu H, Jun Y, Wickner W. Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. EMBO J, 2008, 27(15): 2031- 2042.[90] Stroupe C, Hickey CM, Mima J, Burfeind AS, Wickner W. Minimal membrane docking requirements revealed by re-constitution of Rab GTPase-dependent membrane fusion from purified components. Proc Natl Acad Sci USA, 2009, 106(42): 17626-17633.[91] Ohya T, Miaczynska M, Coskun Ü, Lommer B, Runge A, Drechsel D, Kalaidzidis Y, Zerial M. Reconstitution of Rab- and SNARE-dependent membrane fusion by synthetic endosomes. Nature, 2009, 459(7250): 1091-1097.[92] Nielsen E, Christoforidis S, Uttenweiler-Joseph S, Miac-zynska M, Dewitte F, Wilm M, Hoflack B, Zerial M. Ra-benosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE fin-ger domain. J Cell Biol, 2000, 151(3): 601-612.[93] Okamoto M, Südhof TC. Mints, Munc18-interacting pro-teins in synaptic vesicle exocytosis. J Biol Chem, 1997, 272(50): 31459-31464.[94] Butz S, Okamoto M, Südhof TC. A tripartite protein com-plex with the potential to couple synaptic vesicle exocyto-sis to cell adhesion in brain. Cell, 1998, 94(6): 773-782.[95] Biederer T, Südhof TC. Mints as adaptors. Direct binding to neurexins and recruitment of munc18. J Biol Chem, 2000, 275(51): 39803-39806.[96] Verhage M, de Vries KJ, Røshol H, Burbach JPH, Gispen WH, Südhof TC. DOC2 proteins in rat brain: Complementary distribution and proposed function as vesicular adapter proteins in early stages of secretion. Neuron, 1997, 18(3): 453-461.[97] Duncan RR, Betz A, Shipston MJ, Brose N, Chow RH. Transient, phorbol ester-induced DOC2- Munc13 interactions in vivo. J Biol Chem, 1999, 274(39): 27347-27350.[98] Orita S, Sasaki T, Komuro R, Sakaguchi G, Maeda M, Igarashi H, Takai Y. Doc2 enhances Ca2+-dependent exocytosis from PC12 cells. J Biol Chem, 271(13): 7257-7260.[99] Korteweg N, Denekamp FA, Verhage M, Burbach JPH. Different spatiotemporal expression of DOC2 genes in the developing rat brain argues for an additional, nonsynaptic role of DOC2B in early development. Eur J Neuro-sci, 2000, 12(1): 165-171.[100] Sakaguchi G, Manabe T, Kobayashi K, Orita S, Sasaki T, Naito A, Maeda M, Igarashi H, Katsuura G, Nishioka H, Mizoguchi A, Itohara S, Takahashi T, Takai Y. Doc2α is an activity- dependent modulator of excitatory synaptic transmission. Eur J Neurosci, 1999, 11(12): 4262-4268.[101] Finger FP, Novick P. Synthetic interactions of the post-Golgi sec mutations of Saccharomyces cerevisiae. Genetics, 2000, 156(3): 943-951.[102] Tall GG, Hama H, DeWald DB, Horazdovsky BF. The phosphatidylinositol 3-phosphate binding protein Vac1p interacts with a Rab GTPase and a Sec1p homologue to facilitate vesicle-mediated vacuolar protein sorting. Mol Biol Cell, 1999, 10(6): 1873-1889.[103] Fujita Y, Shirataki H, Sakisaka T, Asakura T, Ohya T, Kotani H, Yokoyama S, Nishioka H, Matsuura Y, Mizoguchi A, Scheller RH, Takai Y. Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron, 1998, 20(5): 905-915.[104] Pobbati AV, Razeto A, Böddener M, Becker S, Fasshauer D. Structural basis for the inhibitory role of tomosyn in exocytosis. J Biol Chem, 2004, 279(45): 47192-47200.[105] Hatsuzawa K, Lang T, Fasshauer D, Bruns D, Jahn R. The R-SNARE motif of tomosyn forms SNARE core com-plexes with syntaxin 1 and SNAP-25 and down-regulates exocytosis. J Biol Chem, 2003, 278(33): 31159- 31166.[106] Gracheva EO, Burdina AO, Touroutine D, Berthelot-Grosjean M, Parekh H, Richmond JE. Tomosyn negatively regulates CAPS-dependent peptide release at Caenorhabditis elegans synapses. J Neuro-sci, 2007, 27(38): 10176-10184.[107] Sakisaka T, Yamamoto Y, Mochida S, Nakamura M, Ni-shikawa K, Ishizaki H, Okamoto-Tanaka M, Miyoshi J, Fujiyoshi Y, Manabe T, Takai Y. Dual inhibition of SNARE complex formation by tomosyn ensures controlled neurotransmitter release. J Cell Biol, 2008, 183(2): 323- 337.[108] Gracheva EO, Burdina AO, Holgado AM, Berthelot-Grosjean M, Ackley BD, Hadwiger G, Nonet ML, Weimer RM, Richmond JE. Tomosyn inhibits synaptic vesicle priming in Caenorhabditis elegans. PLoS Biol, 2006, 4(8): 1426-1437.[109] Lehman K, Rossi G, Adamo JE, Brennwald P. Yeast homologues of tomosyn and lethal giant larvae function in exocytosis and are associated with the plasma membrane SNARE, Sec9. J Cell Biol, 1999, 146(1): 125-140. |
[1] | 鲍永美,刘永惠,许冬清,黄骥,王州飞,王建飞,张红生. 水稻Qb-SNARE蛋白OsNPSN11多克隆抗体制备、鉴定与应用[J]. 遗传, 2010, 32(9): 961-965. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: