[1] Moloney A, Sattelle DB, Lomas DA, Crowther DC. Alz-heimer’s disease: insights from Drosophila melanogaster models. Trends in Biochemical Sciences, 2009, 35(4): 228–235. <\p>
[2] Feany MB, Bender WW. A Drosophila model of Parkinson’s disease. Nature, 2000, 404(6776): 394–398. <\p>
[3] Wolfgang WJ, Miller TW, Webster JM, Huston JS, Thompson LM, Marsh JL, Messer A. Suppression of Hun-tington’s disease pathology in Drosophila by human sin-gle-chain Fv antibodies. Proc Natl Acad Sci USA, 2005, 102(32): 11563–11568. <\p>
[4] Thackray AM, Muhammad F, Zhang C, Di Y, Jahn TR, Landgraf M, Crowther DC, Evers JF, Bujdoso R. Ovine PrP transgenic Drosophila show reduced locomotor acti¬vity and decreased survival. Biochem J, 2012, 444(3): 487– 495. <\p>
[5] St Johnston D. The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet, 2002, 3(3): 176–188. <\p>
[6] Pandey UB, Nichols CD. Human disease models in Dro-sophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev, 2011, 63(2): 411–436. <\p>
[7] Satta R, Dimitrijevic N, Manev H. Drosophila metabolize 1, 4-butanediol into gamma-hydroxybutyric acid in vivo. Eur J Pharmacol, 2003, 473(2?3): 149–152. <\p>
[8] Wolf FW, Heberlein U. Invertebrate models of drug abuse. J Neurobiol, 2003, 54(1): 161–178. <\p>
[9] Andretic R, Kim YC, Jones FS, Han KA, Greenspan RJ. Drosophila D1 dopamine receptor mediates caffeine- induced arousal. Proc Natl Acad Sci USA, 2008, 105(51): 20392–20397. <\p>
[10] Lloyd TE, Taylor JP. Flightless flies: Drosophila models of neuromuscular disease. Ann NY Acad Sci, 2010, 1184: e1–e20. <\p>
[11] Reiter LT, Potocki L, Chien S, Gribskov M, Bier E. A systematic analysis of human disease-associated gene se-quences in Drosophila melanogaster. Genome Res, 2001, 11(6): 1114–1125. <\p>
[12] Wassarman DA, Therrien M, Rubin GM. The Ras signaling pathway in Drosophila. Curr Opin Genet Dev, 1995, 5(1): 44–50. <\p>
[13] Oro AE, Higgins KM, Hu ZL, Bonifas JM, Epstein EH Jr, Scott MP. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science, 1997, 276(5313): 817–821. <\p>
[14] Dahmane N, Lee J, Robins P, Heller P, Ruizi AA. Activation of the transcription factor Gli1 and the sonic hedgehog signalling pathway in skin tumours. Nature, 1997, 389(6653): 876–881. <\p>
[15] Gonzalez C. Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer, 2013, 13(3): 172–183. <\p>
[16] Ranganathan P, Weaver KL, Capobianco AJ. Notch signaling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer, 2011, 11(5): 338–351. <\p>
[17] Espinoza I, Pochampally R, Xing F, Watabe K, Miele L. Notch signaling: targeting cancer stem cells and epitheli-al-to-mesenchymal transition. Onco Targets Ther, 2013, 6: 1249–1259. <\p>
[18] Malinge S, Ben-Abdelali R, Settegrana C, Radford-Weiss I, Debre M, Beldford K, Macintyre EA, Villeval JL, Vainchenker W, Berger R, Bernard OA, Delabesse E, Pe-nard-Lacronique V. Novel activating JAK2 mutation in a patient with Down syndrome and B-cell Precursor acute lymphoblastic leukemia. Blood, 2007, 109(5): 2202–2204. <\p>
[19] Harrison DA, Binari R, Nahreini TS, Gilman M, Perrimon N. Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J, 1995, 14(12): 2857–2865. <\p>
[20] Vainchenker W, Dusa A, Constantinescu SN. JAKs in pa-thology: role of Janus kinases in hematopoietic malignancies and immunodeficiencies. Semin Cell Dev Biol, 2008, 19(4): 385–393. <\p>
[21] Polakis |