[1] Esvelt KM, Wang HH. Genome-scale engineering for systems and synthetic biology. Mol Syst Biol , 2013, 9: 641. [2] Lu XJ, Xue HY, Ke ZP, Chen JL, Ji LJ. CRISPR-Cas9: a new and promising player in gene therapy. J Med Genet , 2015, 52(5): 289-296. [3] Brommage R. Genetic approaches to identifying novel osteoporosis drug targets. J Cell Biochem , 2015, 116(10): 2139-2145. [4] Rubin GM, Lewis EB. A brief history of Drosophila 's contributions to genome research. Science , 2000, 287(5461): 2216-2218. [5] Adams MD, Sekelsky JJ. From sequence to phenotype: reverse genetics in Drosophila melanogaster . Nat Rev Genet , 2002, 3(3): 189-198. [6] Cooley L, Kelley R, Spradling A. Insertional mutagenesis of the Drosophila genome with single P elements. Science , 1988, 239(4844): 1121-1128. [7] Rong YS, Golic KG. Gene targeting by homologous recombination in Drosophila . Science , 2000, 288(5473): 2013-2018. [8] Rong YS, Titen SW, Xie HB, Golic MM, Bastiani M, Bandyopadhyay P, Olivera BM, Brodsky M, Rubin GM, Golic KG. Targeted mutagenesis by homologous recombination in D. melanogaster . Genes Dev , 2002, 16(12): 1568-1581. [9] Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis , 2002, 23(5): 687-696. [10] St Johnston, D. The art and design of genetic screens: Drosophila melanogaster . Nat Rev Genet , 2002, 3(3): 176-188. [11] Lin SC, Chang YY, Chan CC. Strategies for gene disruption in Drosophila . Cell Biosci , 2014, 4(1): 63. [12] Yamamoto S, Charng WL, Rana NA, Kakuda S, Jaiswal M, Bayat V, Xiong B, Zhang K, Sandoval H, David G, Wang H, Haltiwanger RS, Bellen HJ. A mutation in EGF repeat-8 of Notch discriminates between Serrate/Jagged and Delta family ligands. Science , 2012, 338(6111): 1229- 1232. [13] Liao TS, Call GB, Guptan P, Cespedes A, Marshall J, Yackle K, Owusu-Ansah E, Mandal S, Fang QA, Goodstein GL, Kim W, Banerjee U. An efficient genetic screen in Drosophila to identify nuclear-encoded genes with mitochondrial function. Genetics , 2006, 174(1): 525-533. [14] Berger J, Suzuki T, Senti KA, Stubbs J, Schaffner G, Dickson BJ. Genetic mapping with SNP markers in Drosophila . Nat Genet , 2001, 29(4): 475-481. [15] Martin SG, Dobi KC, St Johnston D. A rapid method to map mutations in Drosophila . Genome Biol , 2001, 2(9): RESEARCH0036. [16] Bentley A, MacLennan B, Calvo J, Dearolf CR. Targeted recovery of mutations in Drosophila . Genetics , 2000, 156(3): 1169-1173. [17] Venken KJ. Bellen HJ. Emerging technologies for gene manipulation in Drosophila melanogaster . Nat Rev Genet , 2005, 6(3): 167-178. [18] Gao G, McMahon C, Chen J, Rong YS. A powerful method combining homologous recombination and site- specific recombination for targeted mutagenesis in Drosophila . Proc Natl Acad Sci USA , 2008, 105(37): 13999- 14004. [19] Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA , 1996, 93(3): 1156-1160. [20] Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics , 2002, 161(3): 1169-1175. [21] Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D. Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics , 2006, 172(4): 2391-2403. [22] Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science , 2003, 300(5620): 764. [23] Carroll D. Genome engineering with zinc-finger nucleases. Genetics , 2011, 188(4): 773-782. [24] Beumer KJ, Trautman JK, Bozas A, Liu JL, Rutter J, Gall JG, Carroll D. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci USA , 2008, 105(50): 19821-19826. [25] Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol , 2008, 26(6): 702-708. [26] Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol , 2008, 26(6): 695-701. [27] Foley JE, Yeh JR, Maeder ML, Reyon D, Sander JD, Peterson RT, Joung JK. Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS One , 2009, 4(2): e4348. [28] Carbery ID, Ji D, Harrington A, Brown V, Weinstein EJ, Liaw L, Cui X. Targeted genome modification in mice using zinc-finger nucleases. Genetics , 2010, 186(2): 451-459. [29] Meyer M, de Angelis MH, Wurst W, Kuhn R. Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci USA , 2010, 107(34): 15022-15026. [30] Geurts AM, Moreno C. Zinc-finger nucleases: new strategies to target the rat genome. Clin Sci (Lond) , 2010, 119(8): 303-311. [31] Young JJ, Cherone JM, Doyon Y, Ankoudinova I, Faraji FM, Lee AH, Ngo C, Guschin DY, Paschon DE, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Harland RM, Zeitler B. Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc Natl Acad Sci USA , 2011, 108(17): 7052-7057. [32] Doyon Y, Vo TD, Mendel MC Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods , 2011, 8(1): 74-79. [33] Ramirez CL, Foley JE, Wright DA, Muller-Lerch F, Rahman SH, Cornu TI, Winfrey RJ, Sander JD, Fu F, Townsend JA, Cathomen T, Voytas DF, Joung JK. Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods , 2008, 5(5): 374-375. [34] Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Muller-Lerch F, Fu F, Pearlberg J, Gobel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB, Jr. Cathomen T, Voytas DF, Joung JK. Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell , 2008, 31(2): 294-301. [35] Gupta RM, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest , 2014, 124(10): 4154-4161. [36] Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science , 2009, 326(5959): 1509-1512. [37] Christian ML, Demorest ZL, Starker CG, Osborn MJ, Nyquist MD, Zhang Y, Carlson DF, Bradley P, Bogdanove AJ, Voytas DF. Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS One , 2012, 7(9): e45383. [38] Wirt SE, Porteus MH. Development of nuclease-mediated site-specific genome modification. Curr Opin Immunol , 2012, 24(5): 609-616. [39] Liu J, Li C, Yu Z, Huang P, Wu H, Wei C, Zhu N, Shen Y, Chen Y, Zhang B, Deng WM, Jiao R. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics , 2012, 39(5): 209-215. [40] Beumer KJ, Trautman JK, Christian M, Dahlem TJ, Lake CM, Hawley RS, Grunwald DJ, Voytas DF, Carroll D. Comparing zinc finger nucleases and transcription activator-like effector nucleases for gene targeting in Drosophila . G3 (Bethesda) , 2013, 3(10): 1717-1725. [41] Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S. Assembly of designer TAL effectors by Golden Gate cloning. PLoS One , 2011, 6(5): e19722. [42] Huang P, Xiao A, Tong X, Zu Y, Wang Z, Zhang B. TALEN construction via "Unit Assembly" method and targeted genome modifications in zebrafish. Methods , 2014, 69(1): 67-75. [43] Shen Y, Xiao A, Huang P, Wang W, Zhu Z, Zhang B. TALE nuclease engineering and targeted genome modification. Hereditas(Beijing) , 2013, 35(4): 395-409. 沈延, 肖安, 黄鹏, 王唯晔, 朱作言, 张博. 类转录激活因子效应物核酸酶(TALEN)介导的基因组定点修饰技术. 遗传, 2013, 35(4): 395-409. [44] Shen Y, Huang P, Zhang B. A protocol for TALEN construction and gene targeting in zebrafish. Hereditas(Beijing) , 2013, 35(4): 533–544. 沈延, 黄鹏, 张博. TALEN构建与斑马鱼基因组定点突变的实验方法与流程. 遗传, 2013, 35(4): 533-544. [45] Katsuyama T, Akmammedov A, Seimiya M, Hess SC, Sievers C, Paro R. An efficient strategy for TALEN- mediated genome engineering in Drosophila . Nucleic Acids Res , 2013, 41(17): e163. [46] Yu Z, Chen H, Liu J, Zhang H, Yan Y, Zhu N, Guo Y, Yang B, Chang Y, Dai F, Liang X, Chen Y, Shen Y, Deng WM, Chen J, Zhang B, Li C, Jiao R. Various applications of TALEN- and CRISPR/Cas9-mediated homologous recombination to modify the Drosophila genome. Biol Open , 2014, 3(4): 271-280. [47] Crocker J, Stern DL. TALE-mediated modulation of transcriptional enhancers in vivo . Nat Methods , 2013, 10(8): 762-767. [48] Westra ER, Brouns SJ. The rise and fall of CRISPRs- dynamics of spacer acquisition and loss. Mol Microbiol , 2012, 85(6): 1021-1025. [49] Gaj T, Gersbach CA, Barbas CF 3 rd . ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol , 2013, 31(7): 397-405. [50] Zhou J, Xu Q, Yao J, Yu S, Cao S. CRISPR/Cas9 genome editing technique and its application in site-directed genome modification of animals. Hereditas(Beijing) , 2015, 37 (10): 1011-1020. 周金伟, 徐绮嫔, 姚婧, 余树民, 曹随忠. CRISPR/Cas9基因组编辑技术及其在动物基因组定点修饰中的应用. 遗传, 2015, 37 (10): 1011-1020. [51] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science , 2012, 337(6096): 816-821. [52] Yu Z, Ren M, Wang Z, Zhang B, Rong YS, Jiao R, Gao G. Highly efficient genome modifications mediated by CRISPR/ Cas9 in Drosophila . Genetics , 2013, 195(1): 289-291. [53] Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK. Cummings AM, O'Connor-Giles KM. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila . Genetics , 2014, 196(4): 961-971. [54] Kondo S, Ueda R. Highly improved gene targeting by germline-specific Cas9 expression in Drosophila . Genetics , 2013, 195(3): 715-721. [55] Xue Z, Wu M, Wen K, Ren M, Long L, Zhang X, Gao G. CRISPR/Cas9 mediates efficient conditional mutagenesis in Drosophila. G3 (Bethesda) , 2014, 4(11): 2167-2173. [56] Xu J, Ren X, Sun J, Wang X, Qiao HH, Xu BW, Liu LP, Ni JQ. A Toolkit of CRISPR-based genome editing systems in Drosophila . J Genet Genomics , 2015, 42(4): 141-149. [57] Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science , 2014, 346(6213): 1258096. [58] Pattanayak V, Guilinger JP, Liu DR. determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol , 2014, 546: 47-78. [59] Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y, Yang SJ, Qiao HH, Wang X, Hu Q, Deng P, Liu LP, Ji JY, Li JB, Ni JQ. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila . Cell Rep , 2014, 9(3): 1151-1162. [60] Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol , 2013, 31(9): 833-838. |