[1] Sawzdargo M, George SR, Nguyen T, Xu S, Kolakowski LF, O'Dowd BF. A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13. 1. Biochem Biophys Res Commun, 1997, 239(2): 543-547.[2] Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem, 2003, 278(13): 11303-11311.[3] Haga H, Yamada R, Ohnishi Y, Nakamura Y, Tanaka T. Gene-based SNP discovery as part of the Japanese Millennium Genome Project: identification of 190, 562 genetic variations in the human genome. Single-nucleotide polymorphism. J Human Genet, 2002, 47(11): 605-610.[4] Ogawa T, Hirose H, Miyashita K, Saito I, Saruta T. GPR40 gene Arg211His polymorphism may contribute to the variation of insulin secretory capacity in Japanese men. Metabolism, 2005, 54(3): 296-299.[5] Walker CG, Goff L, Bluck LJ, Griffin BA, Jebb SA, Lovegrove JA, Sanders TA, Frost GS. Variation in the FFAR1 gene modifies BMI, body composition and beta-cell function in overweight subjects: an exploratory analysis. PloS One, 2011, 6(4): e19146.[6] Bartoov-Shifman R, Ridner G, Bahar K, Rubins N, Walker MD. Regulation of the gene encoding GPR40, a fatty acid receptor expressed selectively in pancreatic beta cells. J Biol Chem, 2007, 282(32): 23561-23571.[7] Sosinsky A, Glusman G, Lancet D. The genomic structure of human olfactory receptor genes. Genomics, 2000, 70(1): 49-61.[8] Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI. The orphan G protein-copled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem, 2003, 278(13): 11303-11311.[9] Kotarsky K, Nilsson NE, Flodgren E, Owman C, Olde B. A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem Biophys Res Commun, 2003, 301(2): 406-410.[10] Hara T, Hirasawa A, Sun Q, Sadakane K, Itsubo C, Iga T, Adachi T, Koshimizu TA, Hashimoto T, Asakawa Y, Tsujimoto G. Novel selective ligands for free fatty acid receptors GPR120 and GPR40. Naunyn-Schmiedeberg's Archiv Pharmacol, 2009, 380(3): 247-255.[11] Stewart G, Hira T, Higgins A, Smith CP, McLaughlin JT. Mouse GPR40 heterologously expressed in Xenopus oo-cytes is activated by short-, medium-, and long-chain fatty acids. Am J Physiol, 2006, 290(3): C785-C792.[12] Garrido DM, Corbett DF, Dwornik KA, Goetz AS, Little-ton TR, McKeown SC, Mills WY, Smalley TL Jr, Briscoe CP, Peat AJ. Synthesis and activity of small molecule GPR40 agonists. Bioorg Med Chem Lett, 2006, 16(7): 1840-1845.[13] Briscoe CP, Peat AJ, McKeown SC, Corbett DF, Goetz AS, Littleton TR, McCoy DC, Kenakin TP, Andrews JL, Am-mala C, Fornwald JA, Ignar DM, Jenkinson S. Pharma-cological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Brit J Phar-macol, 2006, 148(5): 619-628.[14] McKeown SC, Corbett DF, Goetz AS, Littleton TR, Bigham E, Briscoe CP, Peat AJ, Watson SP, Hickey DM. Solid phase synthesis and SAR of small molecule agonists for the GPR40 receptor. Bioorg Med Chem Lett, 2007, 17(6): 1584-1589.[15] Tikhonova IG, Sum CS, Neumann S, Thomas CJ, Raaka BM, Costanzi S, Gershengorn MC. Bidirectional, iterative approach to the structural delineation of the functional "chemoprint" in GPR40 for agonist recognition. J Medicinal Chem, 2007, 50(13): 2981-2989. |