[1] Sawzdargo M, George SR, Nguyen T, Xu S, Kolakowski LF, O'Dowd BF. A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13. 1. Biochem Biophys Res Commun, 1997, 239(2): 543-547.[2] Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem, 2003, 278(13): 11303-11311.[3] Haga H, Yamada R, Ohnishi Y, Nakamura Y, Tanaka T. Gene-based SNP discovery as part of the Japanese Millennium Genome Project: identification of 190, 562 genetic variations in the human genome. Single-nucleotide polymorphism. J Human Genet, 2002, 47(11): 605-610.[4] Ogawa T, Hirose H, Miyashita K, Saito I, Saruta T. GPR40 gene Arg211His polymorphism may contribute to the variation of insulin secretory capacity in Japanese men. Metabolism, 2005, 54(3): 296-299.[5] Walker CG, Goff L, Bluck LJ, Griffin BA, Jebb SA, Lovegrove JA, Sanders TA, Frost GS. Variation in the FFAR1 gene modifies BMI, body composition and beta-cell function in overweight subjects: an exploratory analysis. PloS One, 2011, 6(4): e19146.[6] Bartoov-Shifman R, Ridner G, Bahar K, Rubins N, Walker MD. Regulation of the gene encoding GPR40, a fatty acid receptor expressed selectively in pancreatic beta cells. J Biol Chem, 2007, 282(32): 23561-23571.[7] Sosinsky A, Glusman G, Lancet D. The genomic structure of human olfactory receptor genes. Genomics, 2000, 70(1): 49-61.[8] Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI. The orphan G protein-copled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem, 2003, 278(13): 11303-11311.[9] Kotarsky K, Nilsson NE, Flodgren E, Owman C, Olde B. A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem Biophys Res Commun, 2003, 301(2): 406-410.[10] Hara T, Hirasawa A, Sun Q, Sadakane K, Itsubo C, Iga T, Adachi T, Koshimizu TA, Hashimoto T, Asakawa Y, Tsujimoto G. Novel selective ligands for free fatty acid receptors GPR120 and GPR40. Naunyn-Schmiedeberg's Archiv Pharmacol, 2009, 380(3): 247-255.[11] Stewart G, Hira T, Higgins A, Smith CP, McLaughlin JT. Mouse GPR40 heterologously expressed in Xenopus oo-cytes is activated by short-, medium-, and long-chain fatty acids. Am J Physiol, 2006, 290(3): C785-C792.[12] Garrido DM, Corbett DF, Dwornik KA, Goetz AS, Little-ton TR, McKeown SC, Mills WY, Smalley TL Jr, Briscoe CP, Peat AJ. Synthesis and activity of small molecule GPR40 agonists. Bioorg Med Chem Lett, 2006, 16(7): 1840-1845.[13] Briscoe CP, Peat AJ, McKeown SC, Corbett DF, Goetz AS, Littleton TR, McCoy DC, Kenakin TP, Andrews JL, Am-mala C, Fornwald JA, Ignar DM, Jenkinson S. Pharma-cological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Brit J Phar-macol, 2006, 148(5): 619-628.[14] McKeown SC, Corbett DF, Goetz AS, Littleton TR, Bigham E, Briscoe CP, Peat AJ, Watson SP, Hickey DM. Solid phase synthesis and SAR of small molecule agonists for the GPR40 receptor. Bioorg Med Chem Lett, 2007, 17(6): 1584-1589.[15] Tikhonova IG, Sum CS, Neumann S, Thomas CJ, Raaka BM, Costanzi S, Gershengorn MC. Bidirectional, iterative approach to the structural delineation of the functional "chemoprint" in GPR40 for agonist recognition. J Medicinal Chem, 2007, 50(13): 2981-2989.[16] Sum CS, Tikhonova IG, Neumann S, Engel S, Raaka BM, Costanzi S, Gershengorn MC. Identification of residues important for agonist recognition and activation in GPR40. J Biol Chem, 2007, 282(40): 29248-29255.[17] Bhatt A, Patel PD, Patel MR, Singh S, Lau-Cam CA, Talele TT. CoMSIA study on substituted aryl alkanoic acid analogs as GPR40 agonists. Chem Biol Drug Design, 2011, 77(5): 361-372.[18] Tsujihata Y, Ito R, Suzuki M, Harada A, Negoro N, Yasuma T, Momose Y, Takeuchi K. TAK-875, an orally available G protein-coupled receptor 40/free fatty acid receptor 1 agonist, enhances glucose- dependent insulin secretion and improves both postprandial and fasting hyper-glycemia in type 2 diabetic rats. J Pharmacol Exp Therapeutics, 2011, 339(1): 228-237.[19] Yazaki R, Kumagai N, Shibasaki M. Enantioselective synthesis of a GPR40 agonist AMG 837 via catalytic asymmetric conjugate addition of terminal alkyne to alpha, beta-unsaturated thioamide. Org Lett, 2011, 13(5): 952-955.[20] Christiansen E, Urban C, Merten N, Liebscher K, Karlsen KK, Hamacher A, Spinrath A, Bond AD, Drewke C, Ull-rich S, Kassack MU, Kostenis E, Ulven T. Discovery of potent and selective agonists for the free fatty acid recep-tor 1 (FFA1/GPR40), a potential target for the treatment of type II diabetes. J Medicinal Chem, 2008, 51(22): 7061-7064.[21] Bharate SB, Rodge A, Joshi RK, Kaur J, Srinivasan S, Kumar SS, Kulkarni-Almeida A, Balachandran S, Balakrishnan A, Vishwakarma RA. Discovery of diacylphloroglucinols as a new class of GPR40 (FFAR1) agonists. Bioorg Med Chem Lett, 2008, 18(24): 6357-6361.[22] Rayasam GV, Tulasi VK, Sundaram S, Singh W, Kant R, Davis JA, Saini KS, Ray A. Identification of berberine as a novel agonist of fatty acid receptor GPR40. Phytother Res, 2010, 24(8): 1260-1263.[23] Walsh SP, Severino A, Zhou C, He J, Liang GB, Tan CP, Cao J, Eiermann GJ, Xu L, Salituro G, Howard AD, Mills SG, Yang L. 3-Substituted 3-(4-aryloxyaryl)-propanoic acids as GPR40 agonists. Bioorg Med Chem Lett, 2011, 21(11): 3390-3394.[24] Tikhonova IG, Sum CS, Neumann S, Engel S, Raaka BM, Costanzi S, Gershengorn MC. Discovery of novel agonists and antagonists of the free fatty acid receptor 1 (FFAR1) using virtual screening. J Med Chem, 2008, 51(3): 625-633.[25] Hu H, He LY, Gong Z, Li N, Lu YN, Zhai QW, Liu H, Ji-ang HL, Zhu WL, Wang HY. A novel class of antagonists for the FFAs receptor GPR40. Biochem Biophys Res Commun, 2009, 390(3): 557- 563.[26] Humphries PS, Benbow JW, Bonin PD, Boyer D, Doran SD, Frisbie RK, Piotrowski DW, Balan G, Bechle BM, Conn EL, Dirico KJ, Oliver RM, Soeller WC, Southers JA, Yang X. Synthesis and SAR of 1, 2, 3, 4-tetrahydroisoquinolin-1-ones as novel G-protein-coupled receptor 40 (GPR40) antagonists. Bioorg Med Chem Lett, 2009, 19(9): 2400-2403.[27] Bharate SB, Nemmani KV, Vishwakarma RA. Progress in the discovery and development of small- molecule modu-lators of G-protein-coupled receptor 40 (GPR40/FFA1/ FFAR1): an emerging target for type 2 diabetes. Expert Opin Ther Pat, 2009, 19(2): 237-264.[28] Swaminath G. Fatty acid binding receptors and their physiological role in type 2 diabetes. Archiv der Pharmazie, 2008, 341(12): 753-761.[29] Steneberg P, Rubins N, Bartoov-Shifman R, Walker MD, Edlund H. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab, 2005, 1(4): 245-258.[30] Fujiwara K, Maekawa F, Yada T. Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: mediation by PLC and L-type Ca2+ channel and link to insulin release. Am J Physiol Endocrinol Metab, 2005, 289(4): E670-E677.[31] Diakogiannaki E, Morgan NG. Differential regulation of the ER stress response by long-chain fatty acids in the pancreatic beta-cell. Biochem Soc Trans, 2008, 36(Pt 5): 959-962.[32] Wu J, Sun P, Zhang X, Liu H, Jiang H, Zhu W, Wang H. Inhibition of GPR40 protects MIN6 beta cells from palmitate-induced ER stress and apoptosis. J Cell Biochem, 2012, 113(4): 1152- 1158.[33] Stoddart LA, Brown AJ, Milligan G. Uncovering the pharmacology of the G protein-coupled receptor GPR40: high apparent constitutive activity in guanosine 5′-O-(3-[35S]thio)triphosphate binding studies reflects binding of an endogenous agonist. Mol Pharmacol, 2007, 71(4): 994- 1005.[34] Ma D, Tao B, Warashina S, Kotani S, Lu L, Kaplamadzhiev DB, Mori Y, Tonchev AB, Yamashima T. Expression of free fatty acid receptor GPR40 in the central nervous system of adult monkeys. Neurosci Res, 2007, 58(4): 394-401.[35] Ma DX, Lu L, Boneva NB, Warashina S, Kaplamadzhiev DB, Mori Y, Nakaya MA, Kikuchi M, Tonchev, AB, Okano H, Yamashima T. Expression of free fatty acid receptor GPR40 in the neurogenic niche of adult monkey hippocampus. Hippocampus, 2008, 18(3): 326-333.[36] Ma DX, Zhang MM, Larsen CP, Xu F, Hua W, Yamashima T, Mao Y, Zhou LF. DHA promotes the neuronal differen-tiation of rat neural stem cells transfected with GPR40 gene. Brain Res, 2010, 1330: 1-8.[37] Yamashima T. A putative link of PUFA, GPR40 and adult-born hippocampal neurons for memory. Progr Neuro-biol, 2008, 84(2): 105-115.[38] Kawakita E, Hashimoto M, Shido O. Docosahexaenoic acid promotes neurogenesis in vitro and in vivo. Neuroscience, 2006, 139(3): 991-997.[39] Katakura M, Hashimoto M, Shahdat H M, Gamoh S, Okui T, Matsuzaki K, Shido O. Docosahexaenoic acid promotes neuronal differentiation by regulating basic helix-loop-helix transcription factors and cell cycle in neural stem cells. Neuroscience, 2009, 160(3): 651-660.[40] Boneva N B, Yamashima T. New insights into "GPR40- CREB interaction inadult neurogenesis" specific for primates. Hippocampus, 2012, 22(4): 896-905.[41] Kandel E R. The molecular biology of memory storage: a dialogue between genes and synapses. Science, 2001, 294(5544): 1030-1038.[42] Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, le Coutre J, Ninomiya Y, Damak S. Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci, 2010, 30(25): 8376-8382.[43] Dramane G, Akpona S, Simonin A M, Besnard P, Khan N A. Cell signaling mechanisms of gustatory perception of lipids: can the taste cells be the target of anti-obesity agents? Current medicinal Chemistry, 2011, 18(22): 3417-3422.[44] Galindo M M, Voigt N, Stein J, van Lengerich J, Raguse J D, Hofmann T, Meyerhof W, Behrens M. G protein-coupled receptors in human fat taste perception. Chemical Senses, 2012, 37(2): 123- 139.[45] Liou A P, Lu XP, Sei Y, Zhao XL, Pechhold S, Carrero R J, Raybould H E, Wank S. The G- protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology, 2011, 140(3): 903-912.[46] Janssen S, Laermans J, Iwakura H, Tack J, Depoortere I. Sensing of Fatty acids for octanoylation of ghrelin in-volves a gustatory g-protein. PloS One, 2012, 7(6): e40168. |