[1] Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet, 2010, 11(6): 446–450. <\p>
[2] Matthews SG, Phillips DI. Transgenerational inheritance of stress pathology. Exp Neuro, 2012, 233(1): 95–101. <\p>
[3] Guerrero-Bosagna C, Skinner MK. Environmentally in-duced epigenetic transgenerational inheritance of pheno-type and disease. Mol Cell Endocrinol, 2012, 354(1–2): 3–8. <\p>
[4] Skinner MK, Manikkam M, Guerrero-Bosagna C. Epige-netic transgenerational actions of endocrine disruptors. Reprod Toxicol, 2011, 31(3): 337–343. <\p>
[5] Khashan AS, Abel KM, McNamee R, Pedersen MG, Webb RT, Baker PN, Kenny LC, Mortensen PB. Higher risk of offspring schizophrenia following antenatal maternal ex-posure to severe adverse life events. Arch Gen Psychiatry, 2008, 65(2): 146–152. <\p>
[6] Dunn GA, Bale TL. Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology, 2011, 152(6): 2228–2236. <\p>
[7] Jensen P. Transgenerational epigenetic effects on animal behaviour. Prog Biophys Mol Biol, 2013, 113(3): 447– 454. <\p>
[8] Skinner MK. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod Toxicol, 2008, 25(1): 2–6. <\p>
[9] Champagne FA. Epigenetic mechanisms and the transgenerational effects of maternal care. Front Neuroendocrinol, 2008, 29(3): 386–397. <\p>
[10] Bohacek J, Gapp K, Saab BJ, Mansuy IM. Transgenerational epigenetic effects on brain functions. Biol Psy-chiatry, 2013, 73(4): 313–320. <\p>
[11] Gabory A, Attig L, Junien C. Sexual dimorphism in envi-ronmental epigenetic programming. Mol Cell Endocrinol, 2009, 304(1-2): 8–18. <\p>
[12] Migicovsky Z, Kovalchuk I. Epigenetic memory in mam-mals. Front Genet, 2011, 2: 28. <\p>
[13] Li YF, Sasaki H. Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming. Cell Res, 2011, 21(3): 466–473. <\p>
[14] Guibert S, Forné T, Weber M. Global profiling of DNA methylation erasure in mouse primordial germ cells. Ge-nome Res, 2012, 22(4): 633–641. <\p>
[15] Franklin TB, Russig H, Weiss IC, Gräff J, Linder N, Michalon A, Vizi S, Mansuy IM. Epigenetic transmission of the impact of early stress across generations. Biol Psy-chiatry, 2010, 68(5): 408–415. <\p>
[16] Li Y, O'Neill C. Persistence of cytosine methylation of DNA following fertilisation in the mouse. PLoS ONE, 2012, 7(1): e30687. <\p>
[17] Kelsey G, Feil R. New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos Trans R Soc Lond B Biol Sci, 2013, 368: 20110336. <\p>
[18] Franklin TB, Mansuy IM. Epigenetic inheritance in mammals: evidence for the impact of adverse environ-mental effects. Neurobiol Dis, 2010, 39(1): 61–65. <\p>
[19] Skinner MK, Haque CGBM, Nilsson E, Bhandari R, McCarrey JR. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line. PLoS ONE, 2013, 8(7): e66318. <\p>
[20] Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm pack-ages genes for embryo development. Nature, 2009, 460(7254): 473–478. <\p>
[21] Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, Beisel C, Schübeler D, Stadler MB, Peters AH. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol, 2010, 17(6): 679–687. <\p>
[22] Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, Benayoun BA, Shi Y, Brunet A. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature, 2011, 479(7373): 365–371. <\p>
[23] Stern S, Fridmann-Sirkis Y, Braun E, Soen Y. Epigeneti-cally heritable alteration of fly development in response to toxic challenge. Cell Rep, 2012, 1(5): 528–542. <\p>
[24] Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li RW, Bock C, Li CJ, Gu HC, Zamore PD, Meissner A, Weng ZP, Hofmann HA, Friedman N, Rando OJ. Pater-nally induced transgenerational environmental repro-gramming of metabolic gene expression in mammals. Cell, 2010, 143(7): 1084–1096. <\p>
[25] Muramoto T, Müller I, Thomas G, Melvin A, Chubb JR. Methylation of H3K4 is required for inheritance of active transcriptional states. Curr Biol, 2010, 20(5): 397–406. <\p>
[26] Gu SG, Pak J, Guang SH, Maniar JM, Kennedy S, Fire A. Amplification of siRNA in Caenorhabditis elegans gener-ates a transgenerational sequence-targeted histone H3 ly-sine 9 methylation footprint. Nat Genet, 2012, 44(2): 157– 164. <\p>
[27] de Vanssay A, Bougé AL, Boivin A, Hermant C, Teysset L, Delmarre V, Antoniewski C, Ronsseray S. Paramutation in Drosophila linked to emergence of a piRNA-producing locus. Nature, 2012, 490(7418): 112–115. <\p>
[28] Kiani J, Grandjean V, Liebers R, Tuorto F, Ghanbarian H, Lyko F, Cuzin F, Rassoulzadegan M. RNA-mediated epi-genetic heredity requires the cytosine methyltransferase Dnmt2. PLoS Genet, 2013, 9(5): e1003498. <\p>
[29] Wagner KD, Wagner N, Ghanbarian H, Grandjean V, Gounon P, Cuzin F, Rassoulzadegan M. RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev Cell, 2008, 14(6): 962–969. <\p>
[30] Kumar M, Kumar K, Jain S, Hassan T, Dada R. Novel in-sights into the genetic and epigenetic paternal contribution to the human embryo. Clinics(Sao Paulo), 2013, 68(Suppl. 1): 5–14. <\p>
[31] Sendler E, Johnson GD, Mao SH, Goodrich RJ, Diamond MP, Hauser R, Krawetz SA. Stability, delivery and func-tions of human sperm RNAs at fertilization. Nucleic Acids Res, 2013, 41(7): 4104–4117. <\p>
[32] Blatt J, Van Le L, Weiner T, Sailer S. Ovarian carcinoma in an adolescent with transgenerational exposure to dieth-ylstilbestrol. J Pediatr Hematol Oncol, 2003, 25(8): 635– 636. <\p>
[33] Bromer JG, Wu J, Zhou YP, Taylor HS. Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental pro-gramming. Endocrinology, 2009, 150(7): 3376–3382. <\p>
[34] Salian S, Doshi T, Vanage G. Impairment in protein ex-pression profile of testicular steroid receptor coregulators in male rat offspring perinatally exposed to Bisphenol A. Life Sci, 2009, 85(1–2): 11–18. <\p>
[35] Chamorro-García R, Sahu M, Abbey RJ, Laude J, Pham N, Blumberg B. Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic stea-tosis elicited by prenatal exposure to the obesogen Tribu-tyltin in mice. Environ Health Perspect, 2013, 121(3): 359–366. <\p>
[36] Tracey R, Manikkam M, Guerrero-Bosagna C, Skinner MK. Hydrocarbons (jet fuel JP-8) induce epigenetic transgenerational inheritance of obesity, reproductive dis-ease and sperm epimutations. Reprod Toxicol, 2013, 36: 104–116. <\p>
[37] Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK. Dioxin (TCDD) induces epigenetic transgenerational inheritance of adult onset disease and sperm epimutations. PLoS ONE, 2012, 7(9): e46249. <\p>
[38] Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS ONE, 2013, 8(1): e55387. <\p>
[39] Aly HAA, Azhar AS. Methoxychlor induced biochemical alterations and disruption of spermatogenesis in adult rats. Reprod Toxicol, 2013, 40: 8–15. <\p>
[40] Li XJ, Jiang L, Chen L, Chen HS, Li X. Neurotoxicity of dibutyl phthalate in brain development following perinatal exposure: A study in rats. Environ Toxicol Pharmacol, 2013, 36(2): 392–402. <\p>
[41] Das N, Paul S, Chatterjee D, Banerjee N, Majumder NS, Sarma N, Sau TJ, Basu S, Banerjee S, Majumder P, Bandyopadhyay AK, States JC, Giri AK. Arsenic exposure through drinking water increases the risk of liver and car-diovascular diseases in the population of West Bengal, In-dia. BMC Public Health, 2012, 12: 639. <\p>
[42] Henson MC, Chedrese PJ. Endocrine disruption by cad-mium, a common environmental toxicant with paradoxical effects on reproduction. Exp Biol Med (Maywood), 2004, 229(5): 383–392. <\p>
[43] Dagdemir A, Durif J, Ngollo M, Bignon YJ, Bernard- Gallon D. Histone lysine trimethylation or acetylation can be modulated by phytoestrogen, estrogen or anti-HDAC in breast cancer cell lines. Epigenomics, 2013, 5(1): 51–63. <\p>
[44] Perobelli JE, Martinez MF, da Silva Franchi CA, Fernan-dez CDB, de Camargo JLV, Kempinas Wde G. Decreased sperm motility in rats orally exposed to single or mixed pesticides. J Toxicol Environ Health A, 2010, 73(13–14): 991–1002. <\p>
[45] Zhuang SL, Zhang J, Wen YZ, Zhang CL, Liu WP. Dis-tinct mechanisms of endocrine disruption of DDT-related pesticides toward estrogen receptor α and estrogen-related receptor γ. Environ Toxicol Chem, 2012, 31(11): 2597– 2605. <\p>
[46] Roseboom TJ, Watson ED. The next generation of disease risk: are the effects of prenatal nutrition transmitted across generations? Evidence from animal and human studies. Placenta, 2012, 33(Suppl. 2): e40–e44. <\p>
[47] Zambrano E, Bautista CJ, Deás M, Martínez-Samayoa PM, González-Zamorano M, Ledesma H, Morales J, Larrea F, Nathanielsz PW. A low maternal protein diet during pregnancy and lactation has sex- and window of expo-sure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat. J Physiol, 2006, 571(Pt 1): 221–230. <\p>
[48] Dunn GA, Bale TL. Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology, 2009, 150(11): 4999–5009. <\p>
[49] Fullston T, Ohlsson Teague EM, Palmer NO, Deblasio MJ, Mitchell M, Corbett M, Print CG, Owens JA, Lane M. Pa-ternal obesity initiates metabolic disturbances in two gen-erations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J, 2013, 27(10): 4226–4243. <\p>
[50] Govorko D, Bekdash RA, Zhang CQ, Sarkar DK. Male germline transmits fetal alcohol adverse effect on hypo-thalamic proopiomelanocortin gene across generations. Biol Psychiatry, 2012, 72(5): 378–388. <\p>
[51] Weaver ICG, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ. Epi-genetic programming by maternal behavior. Nat Neurosci, 2004, 7(8): 847–854. <\p>
[52] Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epige-netics, 2008, 3(2): 97–106. <\p>
[53] McGowan PO, Sasaki A, D’Alessio AC, Dymov S, La-bonté B, Szyf M, Turecki G, Meaney MJ. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci, 2009, 12(3): 342–348. <\p>
[54] Franklin TB, Mansuy IM. The prevalence of epigenetic mechanisms in the regulation of cognitive functions and behaviour. Curr Opin Neurobiol, 2010, 20(4): 441–449. <\p>
[55] Kubota T, Miyake K, Hirasawa T. Epigenetic understand-ing of gene-environment interactions in psychiatric disor-ders: a new concept of clinical genetics. Clin Epigenetics, 2012, 4(1): 1.<\p> |