遗传 ›› 2022, Vol. 44 ›› Issue (2): 107-116.doi: 10.16288/j.yczz.21-302
收稿日期:
2021-10-01
修回日期:
2021-12-21
出版日期:
2022-02-20
发布日期:
2021-12-22
通讯作者:
汪晖
E-mail:1937211743@qq.com;wanghui19@whu.edu.cn
作者简介:
曲卉,在读硕士研究生,专业方向:肾上腺发育毒理。E-mail: 基金资助:
Hui Qu1(), Yi Liu1, Yawen Chen1, Hui Wang1,2()
Received:
2021-10-01
Revised:
2021-12-21
Online:
2022-02-20
Published:
2021-12-22
Contact:
Wang Hui
E-mail:1937211743@qq.com;wanghui19@whu.edu.cn
Supported by:
摘要:
印迹基因是由大约100个基因组成的一类特殊子集,主要以亲本单等位基因的方式表达,对胚胎的生长发育具有重要作用。近年来发现,环境因素所引起的印迹基因表观遗传修饰改变可造成胎儿多脏器发育不良甚至成年后多疾病易感,且存在多代遗传效应。本文基于国内外最新研究进展,总结了印迹基因表达改变对个体发育阶段以及生命后期器官功能的影响,提出环境有害因素所致印迹基因表观遗传修饰及表达异常是子代多器官发育不良的重要发生机制,这对于理解个体发育过程中印迹基因表达改变所引起的表型改变及探寻疾病早期防治策略具有重要意义。
曲卉, 柳毅, 陈雅文, 汪晖. 环境因素所致印迹基因改变与子代器官发育[J]. 遗传, 2022, 44(2): 107-116.
Hui Qu, Yi Liu, Yawen Chen, Hui Wang. Alteration of imprinted genes and offspring organ development caused by environmental factors[J]. Hereditas(Beijing), 2022, 44(2): 107-116.
表1
影响印迹基因表达的因素"
环境因素 | 分类 | 外源物 | 印迹基因 | 影响模式 | 参考文献 |
---|---|---|---|---|---|
外源性因素 | 化学因素 | 酒精 | Snrpn | 甲基化降低 | [ |
化学因素 | TCDD | H19/IGF2 | 表达下调 | [ | |
物理因素 | X射线 | H19 | 甲基化模式改变 | [ | |
生物因素 | 直肠弯曲杆菌 | IGF2 | 表达下调 | [ | |
ART | 体外培养 | Peg3 | 甲基化降低 | [ | |
ART | 低温保存 | IGF2R/Plagl1/ H19 | 甲基化及表达改变 | [ | |
亲代因素 | 疾病状况 | 母体孕期先兆子痫 | Phlda2 | 表达上调 | [ |
疾病状况 | 母体产前抑郁症 | Peg3 | 表达下调 | [ | |
疾病状况 | 母体孕期PCOS | H19 | 表达上调 | [ | |
疾病状况 | 父体肥胖 | Mest/Peg3 | 甲基化降低 | [ | |
应激 | 父体慢性心理应激 | Sfmbt2 | 表达下调 | [ |
[1] |
Zoghbi HY, Beaudet AL. Epigenetics and human disease. Cold Spring Harb Perspect Biol, 2016, 8(2):a019497.
doi: 10.1101/cshperspect.a019497 |
[2] |
Moon YS, Smas CM, Lee K, Villena JA, Kim KH, Yun EJ, Sul HS. Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol Cell Biol, 2002, 22(15):5585-5592.
doi: 10.1128/MCB.22.15.5585-5592.2002 |
[3] |
Azzi S, Brioude F, Le Bouc Y, Netchine I. Human imprinting anomalies in fetal and childhood growth disorders: clinical implications and molecular mechanisms. Curr Pharm Des, 2014, 20(11):1751-1763.
doi: 10.2174/13816128113199990525 |
[4] |
Perez JD, Rubinstein ND, Dulac C. New perspectives on genomic imprinting, an essential and multifaceted mode of epigenetic control in the developing and adult brain. Annu Rev Neurosci, 2016, 39:347-384.
doi: 10.1146/neuro.2016.39.issue-1 |
[5] |
Charalambous M, Da Rocha ST, Ferguson-Smith AC. Genomic imprinting, growth control and the allocation of nutritional resources: consequences for postnatal life. Curr Opin Endocrinol Diabetes Obes, 2007, 14(1):3-12.
doi: 10.1097/MED.0b013e328013daa2 pmid: 17940412 |
[6] | Wu Y, Feng X, Gao L, Jiao BW. Imprinted genes: important regulators in development. Hereditas (Beijing), 2016, 38(6):508-522. |
吴瑜, 冯旭, 高岚, 焦保卫. 印记基因:发育中的重要调节因子. 遗传, 2016, 38(6):508-522. | |
[7] |
Wang L, Zhang J, Duan JL, Gao XX, Zhu W, Lu XY, Yang L, Zhang J, Li GQ, Ci WM, Li W, Zhou Q, Aluru N, Tang FC, He C, Huang XX, Liu J. Programming and inheritance of parental DNA methylomes in mammals. Cell, 2014, 157(7):979-991.
doi: 10.1016/j.cell.2014.04.017 |
[8] |
Bartolomei MS, Tilghman SM. Genomic imprinting in mammals. Annu Rev Genet, 1997, 31:493-525.
pmid: 9442905 |
[9] |
Leseva M, Knowles BB, Messerschmidt DM, Solter D. Erase-maintain-establish: natural reprogramming of the mammalian epigenome. Cold Spring Harb Symp Quant Biol, 2015, 80:155-163.
doi: 10.1101/sqb.2015.80.027441 |
[10] |
Van Otterdijk SD, Michels KB. Transgenerational epigenetic inheritance in mammals: how good is the evidence? FASEB J, 2016, 30(7):2457-2465.
doi: 10.1096/fj.201500083 pmid: 27037350 |
[11] |
Weaver JR, Susiarjo M, Bartolomei MS. Imprinting and epigenetic changes in the early embryo. Mamm Genome, 2009, 20(9-10):532-543.
doi: 10.1007/s00335-009-9225-2 pmid: 19760320 |
[12] | Pintican D, Strilciuc Ş, Armean SM, Mihu D. Effects of ethanol, nicotine and caffeine gestational exposure of female rats on lung and brain tissues in fetuses: morphological and biological study. Rom J Morphol Embryol, 2019, 60(2):643-651. |
[13] |
He B, Wen YX, Hu SW, Wang GH, Hu W, Magdalou J, Chen LB, Wang H. Prenatal caffeine exposure induces liver developmental dysfunction in offspring rats. J Endocrinol, 2019, 242(3):211-226.
doi: 10.1530/JOE-19-0066 |
[14] | Niller HH, Minarovits J. Patho-epigenetics of infectious diseases caused by intracellular bacteria. Adv Exp Med Biol, 2016, 879:107-130. |
[15] |
Costa LG, Cole TB, Dao K, Chang YC, Coburn J, Garrick JM. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol Ther, 2020, 210:107523.
doi: 10.1016/j.pharmthera.2020.107523 |
[16] |
Kitsiou-Tzeli S, Tzetis M. Maternal epigenetics and fetal and neonatal growth. Curr Opin Endocrinol Diabetes Obes, 2017, 24(1):43-46.
doi: 10.1097/MED.0000000000000305 pmid: 27898587 |
[17] |
Mani S, Ghosh J, Coutifaris C, Sapienza C, Mainigi M. Epigenetic changes and assisted reproductive technologies. Epigenetics, 2020, 15(1-2):12-25.
doi: 10.1080/15592294.2019.1646572 |
[18] |
Qin JB, Sheng XQ, Wu D, Gao SY, You YP, Yang TB, Wang H. Adverse obstetric outcomes associated with in vitro fertilization in singleton pregnancies. Reprod Sci, 2017, 24(4):595-608.
doi: 10.1177/1933719116667229 |
[19] | Chen M, Heilbronn LK. The health outcomes of human offspring conceived by assisted reproductive technologies (ART).[J]Dev Orig Health Dis, 2017, 8(4):388-402. |
[20] |
Pothineni NV, Kovelamudi S, Kantipudi S. Assisted reproductive techniques and cardiovascular risk. J Am Coll Cardiol, 2019, 73(1):117-118.
doi: S0735-1097(18)39128-9 pmid: 30621945 |
[21] |
Heber MF, Ptak GE. The effects of assisted reproduction technologies on metabolic health and disease. Biol Reprod, 2021, 104(4):734-744.
doi: 10.1093/biolre/ioaa224 |
[22] |
Portha B, Grandjean V, Movassat J. Mother or father: who is in the front line? Mechanisms underlying the non-genomic transmission of obesity/diabetes via the maternal or the paternal line. Nutrients, 2019, 11(2):233.
doi: 10.3390/nu11020233 |
[23] |
Potabattula R, Dittrich M, Schorsch M, Hahn T, Haaf T, El Hajj N. Male obesity effects on sperm and next- generation cord blood DNA methylation. PLoS One, 2019, 14(6):e0218615.
doi: 10.1371/journal.pone.0218615 |
[24] |
Szyf M. DNA methylation, behavior and early life adversity. J Genet Genomics, 2013, 40(7):331-338.
doi: 10.1016/j.jgg.2013.06.004 |
[25] |
Kim J, Frey WD, He HZ, Kim H, Ekram MB, Bakshi A, Faisal M, Perera BPU, Ye A, Teruyama R. Peg3 mutational effects on reproduction and placenta-specific gene families. PLoS One, 2013, 8(12):e83359.
doi: 10.1371/journal.pone.0083359 |
[26] |
Lei JZ, Nie Q, Chen DB. A single-cell epigenetic model for paternal psychological stress-induced transgenerational reprogramming in offspring. Biol Reprod, 2018, 98(6):846-855.
doi: 10.1093/biolre/ioy050 |
[27] | O'neill RJ, Vrana PB, Rosenfeld CS. Maternal methyl supplemented diets and effects on offspring health. Front Genet, 2014, 5:289. |
[28] |
Liang F, Diao L, Liu J, Jiang N, Zhang J, Wang HJ, Zhou WH, Huang GY, Ma D. Paternal ethanol exposure and behavioral abnormities in offspring: associated alterations in imprinted gene methylation. Neuropharmacology, 2014, 81:126-133.
doi: 10.1016/j.neuropharm.2014.01.025 pmid: 24486713 |
[29] |
Zhang XL, Ji MM, Tan XM, Yu KL, Xu LJ, Chen GY, Yu ZL. Role of epigenetic regulation of Igf2 and H19 in 2,3,7,8- tetrachlorobenzo-p-dioxin (TCDD)-induced ovarian toxicity in offspring rats. Toxicol Lett, 2019, 311:98-104.
doi: 10.1016/j.toxlet.2019.04.034 |
[30] |
Zhu B, Huang XH, Chen DJ, Lu YC, Chen Y, Zhao JY. Methylation changes of H19 gene in sperms of X-irradiated mouse and maintenance in offspring. Biochem Biophys Res Commun, 2006, 340(1):83-89.
doi: 10.1016/j.bbrc.2005.11.154 |
[31] | De WE, Mak W, Calhoun S, Stein P, Ord T, Krapp C, Coutifaris C, Schultz RM, Bartolomei MS. In vitro culture increases the frequency of stochastic epigenetic errors at imprinted genes in placental tissues from mouse concepti produced through assisted reproductive technologies. Biol Reprod, 2014, 90(2):22. |
[32] |
Yan Z, Li Q, Zhang L, Kang BJ, Fan W, Deng T, Zhu J, Wang Y. The growth and development conditions in mouse offspring derived from ovarian tissue cryopreservation and orthotopic transplantation. J Assist Reprod Genet, 2020, 37(4):923-932.
doi: 10.1007/s10815-020-01734-5 |
[33] |
Nomura Y, John RM, Janssen AB, Davey C, Finik J, Buthmann J, Glover V, Lambertini L. Neurodevelopmental consequences in offspring of mothers with preeclampsia during pregnancy: underlying biological mechanism via imprinting genes. Arch Gynecol Obstet, 2017, 295(6):1319-1329.
doi: 10.1007/s00404-017-4347-3 pmid: 28382413 |
[34] |
Janssen AB, Capron LE, O'donnell K, Tunster SJ, Ramchandani PG, Heazell AEP, Glover V, John RM. Maternal prenatal depression is associated with decreased placental expression of the imprinted gene peg3. Psychol Med, 2016, 46(14):2999-3011.
pmid: 27523184 |
[35] |
Ghasemi M, Heidari Nia M, Hashemi M, Keikha N, Fazeli K, Taji O, Naghavi A. An association study of polymorphisms in the H19 imprinted gene in an Iranian population with the risk of polycystic ovary syndrome. Biol Reprod, 2020, 103(5):978-985.
doi: 10.1093/biolre/ioaa131 |
[36] |
Soubry A, Murphy SK, Wang F, Huang Z, Vidal AC, Fuemmeler BF, Kurtzberg J, Murtha A, Jirtle RL, Schildkraut JM, Hoyo C. Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int J Obes (Lond), 2015, 39(4):650-657.
doi: 10.1038/ijo.2013.193 |
[37] |
Wu L, Lu Y, Jiao Y, Liu B, Li SG, Li Y, Xing FY, Chen DB, Liu X, Zhao JJ, Xiong XL, Gu YY, Lu JL, Chen XJ, Li XY. Paternal psychological stress reprograms hepatic gluconeogenesis in offspring. Cell Metab, 2016, 23(4):735-743.
doi: 10.1016/j.cmet.2016.01.014 |
[38] |
Charalambous M, Cowley M, Geoghegan F, Smith FM, Radford EJ, Marlow BP, Graham CF, Hurst LD, Ward A. Maternally-inherited Grb10 reduces placental size and efficiency. Dev Biol, 2010, 337(1):1-8.
doi: 10.1016/j.ydbio.2009.10.011 pmid: 19833122 |
[39] |
Wang LX, Balas B, Christ-Roberts CY, Kim RY, Ramos FJ, Kikani CK, Li CL, Deng CX, Reyna S, Musi N, Dong LQ, Defronzo RA, Liu F. Peripheral disruption of the Grb10 gene enhances insulin signaling and sensitivity in vivo. Mol Cell Biol, 2007, 27(18):6497-6505.
doi: 10.1128/MCB.00679-07 |
[40] |
Kent LN, Ohboshi S, Soares MJ. Akt1 and insulin-like growth factor 2 (Igf2) regulate placentation and fetal/ postnatal development. Int J Dev Biol, 2012, 56(4):255-261.
doi: 10.1387/ijdb.113407lk |
[41] |
Forbes BE, Blyth AJ, Wit JM. Disorders of IGFs and IGF-1R signaling pathways. Mol Cell Endocrinol, 2020, 518:111035.
doi: 10.1016/j.mce.2020.111035 |
[42] |
Cao XY, Hua X, Wang XL, Chen L. Exposure of pregnant mice to triclosan impairs placental development and nutrient transport. Sci Rep, 2017, 7:44803.
doi: 10.1038/srep44803 |
[43] |
Jedynak P, Tost J, Calafat AM, Bourova-Flin E, Busato F, Forhan A, Heude B, Jakobi M, Rousseaux S, Schwartz J, Slama R, Vaiman D, Philippat C, Lepeule J. Pregnancy exposure to synthetic phenols and placental DNA methylation - an epigenome-wide association study in male infants from the EDEN cohort. Environ Pollut, 2021, 290:118024.
doi: 10.1016/j.envpol.2021.118024 |
[44] |
Chen XJ, Chen F, Lv PP, Zhang D, Ding GL, Hu XL, Feng C, Sheng JZ, Huang HF. Maternal high estradiol exposure alters CDKN1C and IGF2 expression in human placenta. Placenta, 2018, 61:72-79.
doi: 10.1016/j.placenta.2017.11.009 |
[45] |
Choux C, Petazzi P, Sanchez-Delgado M, Hernandez Mora JR, Monteagudo A, Sagot P, Monk D, Fauque P. The hypomethylation of imprinted genes in IVF/ICSI placenta samples is associated with concomitant changes in histone modifications. Epigenetics, 2020, 15(12):1386-1395.
doi: 10.1080/15592294.2020.1783168 |
[46] |
Yamamoto Y, Nishikawa Y, Tokairin T, Omori Y, Enomoto K. Increased expression of H19 non-coding mRNA follows hepatocyte proliferation in the rat and mouse. J Hepatol, 2004, 40(5):808-814.
pmid: 15094229 |
[47] | Chang S, Hur SK, Naveh NSS, Thorvaldsen JL, French DL, Gagne AL, Jobaliya CD, Anguera MC, Bartolomei MS, Kalish JM. Derivation and investigation of the first human cell-based model of beckwith-wiedemann syndrome. Epigenetics, 2020: 1-11. |
[48] |
Yoshimura H, Matsuda Y, Yamamoto M, Kamiya S, Ishiwata T. Expression and role of long non-coding RNA H19 in carcinogenesis. Front Biosci Landmark, 2018, 23:614-625.
doi: 10.2741/4608 |
[49] |
Deng J, Mueller M, Geng TT, Shen YY, Liu Y, Hou P, Ramillapalli R, Taylor HS, Paidas M, Huang YQ. H19 lncRNA alters methylation and expression of Hnf4α in the liver of metformin-exposed fetuses. Cell Death Dis, 2017, 8(12):e3175.
doi: 10.1038/cddis.2017.392 |
[50] |
Nyirenda MJ, Dean S, Lyons V, Chapman KE, Seckl JR. Prenatal programming of hepatocyte nuclear factor 4alpha in the rat: A key mechanism in the 'foetal origins of hyperglycaemia'?. Diabetologia, 2006, 49(6):1412-1420.
pmid: 16570165 |
[51] |
Zhu X, Wu YB, Zhou J, Kang DM. Upregulation of lncRNA Meg3 promotes hepatic insulin resistance via increasing FoxO1 expression. Biochem Biophys Res Commun, 2016, 469(2):319-325.
doi: 10.1016/j.bbrc.2015.11.048 |
[52] | Zhu X, Li HQ, Wu YB, Zhou J, Yang GW, Wang WD. lncRNA MEG3 promotes hepatic insulin resistance by serving as a competing endogenous RNA of miR-214 to regulate ATF4 expression. Int J Mol Med, 2019, 43(1):345-357. |
[53] |
Wu L, Lu Y, Jiao Y, Liu B, Li SG, Li Y, Xing FY, Chen DB, Liu X, Zhao JJ, Xiong XL, Gu YY, Lu JL, Chen XJ, Li XY. Paternal psychological stress reprograms hepatic gluconeogenesis in offspring. Cell Metab, 2016, 23(4):735-743.
doi: 10.1016/j.cmet.2016.01.014 |
[54] |
Copping NA, Christian SGB, Ritter DJ, Islam MS, Buscher N, Zolkowska D, Pride MC, Berg EL, Lasalle JM, Ellegood J, Lerch JP, Reiter LT, Silverman JL, Dindot SV. Neuronal overexpression of Ube3a isoform 2 causes behavioral impairments and neuroanatomical pathology relevant to 15q11.2-q13.3 duplication syndrome. Hum Mol Genet, 2017, 26(20):3995-4010.
doi: 10.1093/hmg/ddx289 pmid: 29016856 |
[55] |
Sun JD, Liu Y, Moreno S, Baudry M, Bi XN. Imbalanced mechanistic target of rapamycin C1 and C2 activity in the cerebellum of angelman syndrome mice impairs motor function. J Neurosci, 2015, 35(11):4706-4718.
doi: 10.1523/JNEUROSCI.4276-14.2015 |
[56] |
Tang GM, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, Sonders MS, Kanter E, Castagna C, Yamamoto A, Yue ZY, Arancio O, Peterson BS, Champagne F, Dwork AJ. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron, 2014, 83(5):1131-1143.
doi: 10.1016/j.neuron.2014.07.040 |
[57] |
Dunaway KW, Islam MS, Coulson RL, Lopez SJ, Vogel Ciernia A, Chu RG, Yasui DH, Pessah IN, Lott P, Mordaunt C, Meguro-Horike M, Horike SI, Korf I, Lasalle JM. Cumulative impact of polychlorinated biphenyl and large chromosomal duplications on DNA methylation, chromatin, and expression of autism candidate genes. Cell Rep, 2016, 17(11):3035-3048.
doi: S2211-1247(16)31631-X pmid: 27974215 |
[58] | Yang Y, Jiang WD, Yang S, Qi FL, Zhao RQ. Transgenerational inheritance of betaine-induced epigenetic alterations in estrogen-responsive IGF-2/IGFBP2 genes in rat hippocampus. Mol Nutr Food Res, 2020, 64(8):e1900823. |
[59] |
Baumgarten SC, Convissar SM, Zamah AM, Fierro MA, Winston NJ, Scoccia B, Stocco C. FSH regulates IGF-2 expression in human granulosa cells in an AKT-dependent manner. J Clin Endocrinol Metab, 2015, 100(8):E1046-E1055.
doi: 10.1210/jc.2015-1504 |
[60] |
Zhang XL, Ji MM, Tan XM, Yu KL, Xu LJ, Chen GY, Yu ZL. Role of epigenetic regulation of Igf2 and H19 in 2,3,7,8- tetrachlorobenzo-p-dioxin (TCDD)-induced ovarian toxicity in offspring rats. Toxicol Lett, 2019, 311:98-104.
doi: 10.1016/j.toxlet.2019.04.034 |
[61] |
Song PY, Li DY, Wang XD, Zhong XH. Effects of perfluorooctanoic acid exposure during pregnancy on the reproduction and development of male offspring mice. Andrologia, 2018, 50(8):e13059.
doi: 10.1111/and.2018.50.issue-8 |
[62] |
He Z, Zhang JZ, Chen GH, Cao JG, Chen YW, Ai C, Wang H. H19/let-7 axis mediates caffeine exposure during pregnancy induced adrenal dysfunction and its multi- generation inheritance. Sci Total Environ, 2021, 792:148440.
doi: 10.1016/j.scitotenv.2021.148440 |
[63] | Busada JT, Cidlowski JA. Mechanisms of glucocorticoid action during development. Curr Top Dev Biol, 2017, 125:147-170. |
[64] |
Watkins AJ, Sirovica S, Stokes B, Isaacs M, Addison O, Martin RA. Paternal low protein diet programs preimplantation embryo gene expression, fetal growth and skeletal development in mice. Biochim Biophys Acta Mol Basis Dis, 2017, 1863(6):1371-1381.
doi: 10.1016/j.bbadis.2017.02.009 |
[65] |
Cleaton MA, Dent CL, Howard M, Corish JA, Gutteridge I, Sovio U, Gaccioli F, Takahashi N, Bauer SR, Charnock- Jones DS, Powell TL, Smith GCS, Ferguson-Smith AC, Charalambous M. Fetus-derived DLK1 is required for maternal metabolic adaptations to pregnancy and is associated with fetal growth restriction. Nat Genet, 2016, 48(12):1473-1480.
doi: 10.1038/ng.3699 pmid: 27776119 |
[66] |
Traustadottir GÁ, Lagoni LV, Ankerstjerne LBS, Bisgaard HC, Jensen CH, Andersen DC. The imprinted gene delta like non-canonical notch ligand 1 (Dlk1) is conserved in mammals, and serves a growth modulatory role during tissue development and regeneration through notch dependent and independent mechanisms. Cytokine Growth Factor Rev, 2019, 46:17-27.
doi: 10.1016/j.cytogfr.2019.03.006 |
[67] |
Charalambous M, Da Rocha ST, Radford EJ, Medina- Gomez G, Curran S, Pinnock SB, Ferron SR, Vidal-Puig A, Ferguson-Smith AC. DLK1/PREF1 regulates nutrient metabolism and protects from steatosis. Proc Natl Acad Sci USA, 2014, 111(45):16088-16093.
doi: 10.1073/pnas.1406119111 |
[68] |
Matsuzaki H, Kuramochi D, Okamura E, Hirakawa K, Ushiki A, Tanimoto K. Recapitulation of gametic DNA methylation and its post-fertilization maintenance with reassembled DNA elements at the mouse Igf2/H19 locus. Epigenetics Chromatin, 2020, 13(1):2.
doi: 10.1186/s13072-019-0326-1 pmid: 31937365 |
[69] |
Zhang WP, Yang J, Lv Y, Li SL, Qiang M. Paternal benzo[a]pyrene exposure alters the sperm DNA methylation levels of imprinting genes in F0 generation mice and their unexposed F1-2 male offspring. Chemosphere, 2019, 228:586-594.
doi: 10.1016/j.chemosphere.2019.04.092 |
[70] |
Legoff L, Dali O, D'cruz SC, Suglia A, Gely-Pernot A, Hémery C, Kernanec PY, Demmouche A, Kervarrec C, Tevosian S, Multigner L, Smagulova F. Ovarian dysfunction following prenatal exposure to an insecticide, chlordecone, associates with altered epigenetic features. Epigenetics Chromatin, 2019, 12(1):29.
doi: 10.1186/s13072-019-0276-7 pmid: 31084621 |
[71] |
Xu RM, Li C, Liu XY, Gao SR. Insights into epigenetic patterns in mammalian early embryos. Protein Cell, 2021, 12(1):7-28.
doi: 10.1007/s13238-020-00757-z |
[72] |
Short AK, Fennell KA, Perreau VM, Fox A, O'bryan MK, Kim JH, Bredy TW, Pang TY, Hannan AJ. Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring. Transl Psychiatry, 2016, 6(6):e837.
doi: 10.1038/tp.2016.109 |
[73] |
Tammen SA, Friso S, Choi SW. Epigenetics: the link between nature and nurture. Mol Aspects Med, 2013, 34(4):753-764.
doi: 10.1016/j.mam.2012.07.018 |
[1] | 张杨景晖, 常沛瑶, 杨紫淑, 薛宇航, 李雪奇, 张旸. 表观遗传修饰影响花青苷合成研究进展[J]. 遗传, 2022, 44(12): 1117-1127. |
[2] | 赵清雯, 潘东宁. 表观遗传修饰对脂肪组织产热的调控进展[J]. 遗传, 2022, 44(10): 867-880. |
[3] | 王雅楠, 徐涛, 王万鹏, 张庆祝, 解莉楠. 表观遗传修饰在作物重要性状形成中的作用[J]. 遗传, 2021, 43(9): 858-879. |
[4] | 吴杰, 全建平, 叶勇, 吴珍芳, 杨杰, 杨明, 郑恩琴. 染色质转座酶可及性测序研究进展[J]. 遗传, 2020, 42(4): 333-346. |
[5] | 黎伟, 秦俊, 汪晖, 陈廖斌. 表观遗传生物标志物在人类疾病早期诊治中的研究进展[J]. 遗传, 2018, 40(2): 104-115. |
[6] | 薛宪词,于黎. 昆虫非遗传多型性研究进展[J]. 遗传, 2017, 39(9): 798-809. |
[7] | 刘福林, 周瑾, 张蔚, 汪晖. 胎盘发育过程中的表观遗传学改变及其相关疾病[J]. 遗传, 2017, 39(4): 263-275. |
[8] | 敖政, 刘德武, 蔡更元, 吴珍芳, 李紫聪. 克隆哺乳动物的胎盘发育缺陷[J]. 遗传, 2016, 38(5): 402-410. |
[9] | 李书粉,李莎,邓传良,卢龙斗,高武军. 转座子在植物XY性染色体起源与演化过程中的作用[J]. 遗传, 2015, 37(2): 157-164. |
[10] | 陈利, 丁芳, 刘勇, 吴风瑞, 丁彪, 王荣, 李文雍. 小鼠孤雌胚、体外培养胚与体内胚H3K9乙酰式的比较[J]. 遗传, 2015, 37(1): 77-83. |
[11] | 葛少钦, 赵峥辉, 张雪倩, 郝媛. 精子表观遗传修饰及其在胚胎发育过程中的潜在作用[J]. 遗传, 2014, 36(5): 439-446. |
[12] | 曹家雪 张红平 杜立新. 环境因素对DNA甲基化的影响[J]. 遗传, 2013, 35(7): 839-846. |
[13] | 潘丽娜. 表观遗传修饰调控非生物胁迫应答提高植物抗逆性的研究进展[J]. 遗传, 2013, 35(6): 745-751. |
[14] | 王学耕 朱作言 孙永华 赵珏. 鱼类核移植与重编程[J]. 遗传, 2013, 35(4): 433-440. |
[15] | 汤琳琳 刘琼 步世忠 徐雷艇 王钦文 麦一峰 段世伟. 2型糖尿病环境因素与DNA甲基化的研究进展[J]. 遗传, 2013, 35(10): 1143-1152. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: