[1] C, Zeng Y, Huang J, Sobocka MB, Rushbrook JI. Bovine NAD + -dependent isocitrate dehydrogenase: alternative splicing and tissue-dependent expression of subunit 1. Biochemistry , 2000, 39(7): 1807-1816. [2] K. Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged. Trends Plant Sci , 2003, 8(10): 468-471. [3] WB, Fu Y, McGinnis KM. Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res , 2008, 18(9): 1381-1392. [4] A, Ambavaram MMR, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiol , 2012, 160(2): 846-867. [5] C, Koster T, Simpson CG, Shaw P, Danisman S, Brown JWS, Staiger D. An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana. Nucleic Acids Res , 2012, 40(22): 11240-11255. [6] SG, Ali GS, Reddy AS. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. Plant J , 2007, 49(6): 1091-1107. [7] DN, Rogers MF, Labadorf A, Ben-Hur A, Guo H, Paterson AH, Reddy ASN. Comparative analysis of serine/arginine-rich proteins across 27 eukaryotes: insights into sub-family classification and extent of alternative splicing. PLoS O NE , 2011, 6(9): e24542. [8] RJ, Phillips RL. Maize DNA-sequencing strategies and genome organization. Genome Biol , 2004, 5(5): 223. [9] B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez JC, Frutiger S, Hochstrasser D. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electr o phoresis , 1993, 14(10): 1023-1031. [10] B, Basse B, Olsen E, Celis JE. Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis , 1994, 15(3-4): 529-539. [11] MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol , 1999, 112: 531-552. [12] CJA, De Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios L. New and continuing developments at PROSITE. Nucleic Acids Res , 2013, 41(Database issue): D344-D347. [13] CJA, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M. PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform , 2002, 3(3): 265-274. [14] Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res , 2006, 34(Web Server issue): W362-W365. [15] CJ, De Castro E, Langendijk-Genevaux PS, Le Saux V, Bairoch A, Hulo N. ProRule: a new database containing functional and structural information on PROSITE profiles. Bioinformatics , 2005, 21(21): 4060-4066. [16] K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res , 1999, 27(1): 297-300. [17] DS. SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Compute Appl Biosci : CABIOS , 1991, 7(2): 203-206. [18] Mekliche A. Relative water content (RWC) and leaf senescence as screening tools for drought tolerance in wheat. Options M é diterran é ennes : S é rie A , S é minaires M é diterran é ens , 2004, (60): 193-196. [19] AI, Sharov V, Whie J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Rylsov A, Kostukovich E, Borisovsky I, Liu Z, Vinszvich A, Trush V, Quackenbush J. TM4: a free, open-source system for microarray data management and analysis. Biotechniques , 2003, 34(2): 374-378. [20] K, Mori T, Yokoyama K, Koike Y, Tanabe N, Sato N, Takahashi H, Maruta T, Shigeoka S. Identification of alternative splicing events regulated by an Arabidopsis serine/arginine-like protein, atSR45a, in response to high-light stress using a tiling array. Plant Cell Physiol , 2011, 52(10): 1786-1805. [21] N, Yoshimura K, Kimura A, Yabuta Y, Shigeoka S. Differential expression of alternatively spliced mRNAs of Arabidopsis SR protein homolo and atSR45a, in response to environmental stress. Plant Cell Physiol , 2007, 48(7): 1036-1049. [22] N, Kimura A, Yoshimura K, Shigeoka S. Plant-specific SR-related protein atSR45a interacts with spliceosomal proteins in plant nucleus. Plant Mol Biol , 2009, 70(3): 241-252. [23] AJ, Cooper TA. The pathobiology of splicing. J P a thol , 2010, 220(2): 152-163. [24] ASN, Shad Ali G. Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses. Wiley Interdiscip Rev RNA , 2011, 2(6): 875-889. [25] XN, Mount SM. Two alternatively spliced isoforms of the Arabidopsis SR45 protein have distinct roles during normal plant development. Plant Physiol , 2009, 150(3): 1450-1458. [26] IS, Golovkin M, Palusa SG, Link A, Ali GS, Thomas J, Richardson DN, Reddy ASN. Interactions of SR45, an SR-like protein, with spliceosomal proteins and an intronic sequence: insights into regulated splicing. Plant J , 2012, 71(6): 936-947. [27] RF, Carvalho SD, Duque P. The plant-specific SR45 protein negatively regulates glucose and ABA signaling during early seedling development in Arabidopsis . Plant Physiol , 2010, 154(2): 772-783. [28] H, Gordon-Kamm WJ, Lyznik LA. ASF/SF2-like maize pre-mRNA splicing factors affect splice site utilization and their transcripts are alternatively spliced. Gene , 2004, 339: 25-37. [29] M, Reddy AS. An SC35-like protein and a novel serine/arginine-rich protein interact with Arabidopsis U1-70K protein. J Biol Chem , 1999, 274(51): 36428- 36438. [30] GS, Palusa SG, Golovkin M, Prasad J, Manley JL, Reddy ASN. Regulation of plant developmental processes by a novel splicing factor. PLoS O NE , 2007, 2(5): e471. [31] K, Feng LL, Yeakley JM, Gish GD, Cáceres JF, Pawson T, Fu X. SRPK1 and Clk/Sty protein kinases show distinct substrate specificities for serine/arginine-rich splicing factors. J Biol Chem , 1996, 271(40): 24569- 24575. |