遗传 ›› 2019, Vol. 41 ›› Issue (10): 905-918.doi: 10.16288/j.yczz.19-070
收稿日期:
2019-04-18
修回日期:
2019-05-15
出版日期:
2019-10-20
发布日期:
2019-06-04
通讯作者:
徐丹
E-mail:xu200828@163.com
基金资助:
Yujie Wang,Xiaokun Zhou,Dan Xu()
Received:
2019-04-18
Revised:
2019-05-15
Online:
2019-10-20
Published:
2019-06-04
Contact:
Xu Dan
E-mail:xu200828@163.com
Supported by:
摘要:
脑发育相关疾病是一类影响大脑或中枢神经系统生长和发育的疾病。常染色体隐性遗传小头畸形(autosomal recessive primary microcephaly, MCPH)是一种神经系统发育障碍疾病,病人主要表现为头围减小,并伴随一定程度的智力衰退。迄今为止已发现至少有25个基因突变都会导致MCPH,根据它们发现的顺序分别命名为MCPH1~25。MCPH蛋白作为重要的成份参与调控大脑发育相关信号通路。本文对目前发现的25个MCPH相关蛋白的表达模式、细胞定位、分子生物学功能、表型及动物模型进行了综述,旨在提升人们对脑发育相关疾病的致病机制的认知,促进对神经元生成、脑尺寸大小及脑功能调控等分子机制的研究。
王玉杰, 周小坤, 徐丹. 常染色体隐性遗传小头畸形相关蛋白研究进展[J]. 遗传, 2019, 41(10): 905-918.
Yujie Wang, Xiaokun Zhou, Dan Xu. Update on autosomal recessive primary microcephaly (MCPH)-associated proteins[J]. Hereditas(Beijing), 2019, 41(10): 905-918.
[1] | Thornton GK, Woods CG . Primary microcephaly: do all roads lead to Rome? Trends Genet, 2009,25(11):501-510. |
[2] | Kang EC, Burdick KE, Kim JY, Duan X, Guo JU, Sailor KA, Jung DE, Ganesan S, Choi S, Pradhan D, Lu B, Avramopoulos D, Christian K, Malhotra AK, Song HJ, Ming GL . Interaction between FEZ1 and DISC1 in regulation of neuronal development and risk for schizophrenia. Neuron, 2011,72(4):559-571. |
[3] | Kaindl AM, Passemard S, Kumar P, Kraemer N, Issa L, Zwirner A, Gerard B, Verloes A, Mani S, Gressens P . Many roads lead to primary autosomal recessive microcephaly. Prog Neurobiol, 2010,90(3):363-383. |
[4] | Gleeson JG . Neuronal migration disorders. Ment Retard Dev Disabil Res Rev, 2001,7(3):167-171. |
[5] | Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, Chen Z, Zhang C, Christian KM, Song H, Ming GL, Xu Z . Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun, 2016,7. |
[6] | Kim JY, Liu CY, Zhang FY, Duan X, Wen ZX, Song J, Feighery E, Lu B, Rujescu D, St Clair D, Christian K, Callicott JH, Weinberger DR, Song HJ, Ming GL . Interplay between DISC1 and GABA signaling regulates neurogenesis in Mice and Risk for schizophrenia. Cell, 2012,148(5):1051-1064. |
[7] | Dang T, Duan WY, Yu B, Tong DL, Cheng C, Zhang YF, Wu W, Ye K, Zhang WX, Wu M, Wu BB, An Y, Qiu ZL, Wu BL . Autism-associated dyrk1a truncation mutants impair neuronal dendritic and spine growth and interfere with postnatal cortical development. Mol Psychiatry, 2018,23(3):747-758. |
[8] | Mahmood S, Ahmad W, Hassan MJ . Autosomal recessive primary microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum. Orphanet J Rare Dis, 2011,6:39. |
[9] | Woods CG, Parker A . Investigating microcephaly. Arch Dis Child, 2013,98(9):707-713. |
[10] | McDonell LM, Warman Chardon J, Schwartzentruber J, Foster D, Beaulieu CL, FORGE Canada Consortium, Majewski J, Bulman DE, Boycott KM . The utility of exome sequencing for genetic diagnosis in a familial microcephaly epilepsy syndrome. BMC Neurol, 2014,14:22. |
[11] | Kruger RP . Zika virus on the move. Cell, 2016,164(4):585-587. |
[12] | Miner JJ, Cao B, Govero J, Smith AM, Fernandez E, Cabrera OH, Garber C, Noll M, Klein RS, Noguchi KK, Mysorekar IU, Diamond MS . Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell, 2016,165(5):1081-1091. |
[13] | Li C, Xu D, Ye Q, Hong S, Jiang YS, Liu X, Zhang N, Shi L, Qin CF, Xu Z . Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell, 2016,19(5):120-126. |
[14] | Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JLM, Guimar?es KP, Benazzato C, Almeida N, Pignatari GC, Romero S, Polonio CM, Cunha I, Freitas CL, Brand?o WN, Rossato C, Andrade DG, Faria Dde P, Garcez AT, Buchpigel CA, Braconi CT, Mendes E, Sall AA, Zanotto PM, Peron JP, Muotri AR, Beltr?o-Braga PC . The brazilian zika virus strain causes birth defects in experimental models. Nature, 2016,534(7606):267-271. |
[15] | Zaqout S, Morris-Rosendahl D, Kaindl AM . Autosomal recessive primary microcephaly (MCPH): an update. Neuropediatrics, 2017,48(3):135-142. |
[16] | Megraw TL, Sharkey JT, Nowakowski RS . Cdk5rap2 exposes the centrosomal root of microcephaly syndromes. Trends Cell Biol, 2011,21(8):470-480. |
[17] | Manzini MC, Walsh CA . What disorders of cortical development tell us about the cortex: one plus one does not always make two. Curr Opin Genet Dev, 2011,21(3):333-339. |
[18] | Cox J, Jackson AP, Bond J, Woods CG . What primary microcephaly can tell us about brain growth. Trends Mol Med, 2006,12(8):358-366. |
[19] | Farag HG, Froehler S, Oexle K, Ravindran E, Schindler D, Staab T, Huebner A, Kraemer N, Chen W, Kaindl AM . Abnormal centrosome and spindle morphology in a patient with autosomal recessive primary microcephaly type 2 due to compound heterozygous WDR62 gene mutation. Orphanet J Rare Dis, 2013,8:178. |
[20] | Xu D, Zhang F, Wang Y, Sun Y, Xu Z . Microcephaly- associated protein WDR62 regulates neurogenesis through JNK1 in the developing neocortex. Cell Rep, 2014,6(1):104-116. |
[21] | Nicholas AK, Khurshid M, Désir J, Carvalho OP, Cox JJ, Thornton G, Kausar R, Ansar M, Ahmad W, Verloes A, Passemard S, Misson JP, Lindsay S, Gergely F, Dobyns WB, Roberts E, Abramowicz M, Woods CG . WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nat Genet, 2010,42(11):1010-1014. |
[22] | Wang Z, Wu T, Shi L, Zhang L, Zheng W, Qu JY, Niu R, Qi RZ . Conserved motif of CDK5RAP2 mediates its localization to centrosomes and the Golgi complex. J Biol Chem, 2010,285(29):22658-22665. |
[23] | Guo Y, Punj V, Sengupta D, Linstedt AD . Coat-tether interaction in golgi organization. Mol Biol Cell, 2008,19(7):2830-2843. |
[24] | Guemez-Gamboa A, Nguyen LN, Yang H, Zaki MS, Kara M, Ben-Omran T, Akizu N, Rosti RO, Rosti B, Scott E, Schroth J, Copeland B, Vaux KK, Cazenave-Gassiot A, Quek DQ, Wong BH, Tan BC, Wenk MR, Gunel M, Gabriel S, Chi NC, Silver DL, Gleeson JG . Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat Genet, 2015,47(7):809-813. |
[25] | Gaudet P, Livstone MS, Lewis SE, Thomas PD . Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief Bioinform, 2011,12(5):449-462. |
[26] | Woods CG, Bond J, Enard W . Autosomal recessive primary microcephaly (MCPH): A review of clinical, molecular, and evolutionary findings. Am J Hum Genet, 2005,76(5):717-728. |
[27] | Buchman JJ, Durak O, Tsai LH . ASPM regulates Wnt signaling pathway activity in the developing brain. Gene Dev, 2011,25(18):1909-1914. |
[28] | Garcez PP, Diaz-Alonso J, Crespo-Enriquez I, Castro D, Bell D, Guillemot F . Cenpj/CPAP regulates progenitor divisions and neuronal migration in the cerebral cortex downstream of ascl1. Nat Commun, 2015,6:6474. |
[29] | Jayaraman D, Kodani A, Gonzalez DM, Mancias JD, Mochida GH, Vagnoni C, Johnson J, Krogan N, Harper JW, Reiter JF, Yu TW, Bae BI, Walsh CA . Microcephaly proteins Wdr62 and aspm define a mother centriole complex regulating centriole biogenesis, apical complex, and cell fate. Neuron, 2016,92(4):813-828. |
[30] | Chen JF, Zhang Y, Wilde J, Hansen KC, Lai F, Niswander L . Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size. Nat Commun, 2014,5:3885. |
[31] | Zhou ZW, Tapias A, Bruhn C, Gruber R, Sukchev M, Wang ZQ . DNA damage response in microcephaly development of MCPH1 mouse model. DNA Repair (Amst), 2013,12(8):645-655. |
[32] | Fong KW, Hau SY, Kho YS, Jia Y, He L, Qi RZ . Interaction of CDK5RAP2 with EB1 to track growing microtubule tips and to regulate microtubule dynamics. Mol Biol Cell, 2009,20(16):3660-3670. |
[33] | Jiang K, Rezabkova L, Hua SS, Liu Q, Capitani G, Altelaar AFM, Heck AJR, Kammerer RA, Steinmetz MO, Akhmanova A . Microtubule minus-end regulation at spindle poles by an ASPM-katanin complex. Nat Cell Biol, 2017,19(5):480-492. |
[34] | Lim NR, Yeap YY, Zhao TT, Yip YY, Wong SC, Xu D, Ang CS, Williamson NA, Xu Z, Bogoyevitch MA, Ng DC . Opposing roles for JNK and aurora a in regulating the association of WDR62 with spindle microtubules. J Cell Sci, 2015,128(3):527-540. |
[35] | Izraeli S, Lowe LA, Bertness VL, Good DJ, Dorward DW, Kirsch IR, Kuehn MR . The SIL gene is required for mouse embryonic axial development and left-right specification. Nature, 1999,399(6737):691-694. |
[36] | Kadir R, Harel T, Markus B, Perez Y, Bakhrat A, Cohen I, Volodarsky M, Feintsein-Linial M, Chervinski E, Zlotogora J, Sivan S, Birnbaum RY, Abdu U, Shalev S, Birk OS . ALFY-Controlled DVL3 autophagy regulates Wnt signaling, determining human brain size. PLoS Genet, 2016,12(3):e1005919. |
[37] | Abdullah U, Farooq M, Mang Y, Marriam Bakhtiar S, Fatima A, Hansen L, Kjaer KW, Larsen LA, Faryal S, Tommerup N, Mahmood Baig S . A novel mutation in CDK5RAP2 gene causes primary microcephaly with speech impairment and sparse eyebrows in a consanguineous pakistani family. Eur J Med Genet, 2017,60(12):627-630. |
[38] | Darvish H, Esmaeeli-Nieh S, Monajemi GB, Mohseni M, Ghasemi-Firouzabadi S, Abedini SS, Bahman I, Jamali P, Azimi S, Mojahedi F, Dehghan A, Shafeghati Y, Jankhah A, Falah M, Soltani Banavandi MJ, Ghani M, Garshasbi M, Rakhshani F, Naghavi A, Tzschach A, Neitzel H, Ropers HH, Kuss AW, Behjati F, Kahrizi K, Najmabadi H . A clinical and molecular genetic study of 112 Iranian families with primary microcephaly. J Med Genet, 2010,47(12):823-828. |
[39] | Shen J, Eyaid W, Mochida GH, Al-Moayyad F, Bodell A, Woods CG, Walsh CA . ASPM mutations identified in patients with primary microcephaly and seizures. J Med Genet, 2005,42(9):725-729. |
[40] | Miyamoto T, Akutsu SN, Fukumitsu A, Morino H, Masatsuna Y, Hosoba K, Kawakami H, Yamamoto T, Shimizu K, Ohashi H, Matsuura S . PLK1-mediated phosphorylation of WDR62/MCPH2 ensures proper mitotic spindle orientation. Hum Mol Genet, 2017,26(22):4429-4440. |
[41] | Arroyo M, Kuriyama R, Trimborn M, Keifenheim D, Ca?uelo A, Sánchez A, Clarke DJ, Marchal JA . MCPH1, mutated in primary microcephaly, is required for efficient chromosome alignment during mitosis. Sci Rep, 2017,7(1):13019. |
[42] | Issa L, Mueller K, Seufert K, Kraemer N, Rosenkotter H, Ninnemann O, Buob M, Kaindl AM, Morris-Rosendahl DJ . Clinical and cellular features in patients with primary autosomal recessive microcephaly and a novel CDK5RAP2 mutation. Orphanet J Rare Dis, 2013,8:59. |
[43] | Guernsey DL, Jiang HY, Hussin J, Arnold M, Bouyakdan K, Perry S, Babineau-Sturk T, Beis J, Dumas N, Evans SC, Ferguson M, Matsuoka M, Macgillivray C, Nightingale M, Patry L, Rideout AL, Thomas A, Orr A, Hoffmann I, Michaud JL, Awadalla P, Meek DC, Ludman M, Samuels ME . Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am J Hum Genet, 2010,87(1):40-51. |
[44] | Hussain MS, Baig SM, Neumann S, Nürnberg G, Farooq M, Ahmad I, Alef T, Hennies HC, Technau M, Altmüller J, Frommolt P, Thiele H, Noegel AA, Nürnberg P . A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function. Am J Hum Genet, 2012,90(5):871-878. |
[45] | Omer Javed A, Li Y, Muffat J, Su KC, Cohen MA, Lungjangwa T, Aubourg P, Cheeseman IM, Jaenisch R. Microcephaly modeling of kinetochore mutation reveals a brain-specific phenotype. Cell Rep, 2018, 25(2): 368-382.e5. |
[46] | Pulvers JN, Bryk J, Fish JL, Wilsch-Br?uninger M, Arai Y, Schreier D, Naumann R, Helppi J, Habermann B, Vogt J, Nitsch R, Tóth A, Enard W, P??bo S, Huttner WB . Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline. Proc Natl Acad Sci USA, 2010,107(38):16595-16600. |
[47] | Marjanovi? M, Sánchez-Huertas C, Terré B, Gómez R, Scheel JF, Pacheco S, Knobel PA, Martínez-Marchal A, Aivio S, Palenzuela L, Wolfrum U, McKinnon PJ, Suja JA, Roig I, Costanzo V, Lüders J, Stracker TH . CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination. Nat Commun, 2015,6:7676. |
[48] | Zhou Y, Qin Y, Qin Y, Xu B, Guo T, Ke HN, Chen M, Zhang L, Han F, Li Y, Chen M, Behrens A, Wang Y, Xu Z, Chen ZJ, Gao F . Wdr62 is involved in female meiotic initiation via activating JNK signaling and associated with POI in humans. Plos Genet, 2018,14(8):e1007463. |
[49] | Zaqout S, Bessa P, Kr?mer N, Stoltenburg-Didinger G, Kaindl AM . CDK5RAP2 is required to maintain the germ cell pool during embryonic development. Stem Cell Rep, 2017,8(2):198-204. |
[50] | Chen J, Ingham N, Clare S, Raisen C, Vancollie VE, Ismail O, McIntyre RE, Tsang SH, Mahajan VB, Dougan G, Adams DJ, White JK, Steel KP . Mcph1-deficient mice reveal a role for MCPH1 in otitis media. PLoS One, 2013,8(3):e58156. |
[51] | Ke Q, Li W, Lai X, Chen H, Huang L, Kang Z, Li K, Ren J, Lin X, Zheng H, Huang W, Ma Y, Xu D, Chen Z, Song X, Lin X, Zhuang M, Wang T, Zhuang F, Xi J, Mao FF, Xia H, Lahn BT, Zhou Q, Yang S, Xiang AP . TALEN-based generation of a cynomolgus monkey disease model for human microcephaly. Cell Res, 2016,26(9):1048-1061. |
[52] | Johnson MB, Sun X, Kodani A, Borges-Monroy R, Girskis KM, Ryu SC, Wang PP, Patel K, Gonzalez DM, Woo YM, Yan Z, Liang B, Smith RS, Chatterjee M, Coman D, Papademetris X, Staib LH, Hyder F, Mandeville JB, Grant PE, Im K, Kwak H, Engelhardt JF, Walsh CA, Bae BI . Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size. Nature, 2018,556(7701):370-375. |
[53] | Gruber R, Zhou ZW, Sukchev M, Joerss T, Frappart PO, Wang ZQ . MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nat Cell Biol, 2011,13(11):1325-1334. |
[54] | Sgourdou P, Mishra-Gorur K, Saotome I, Henagariu O, Tuysuz B, Campos C, Ishigame K, Giannikou K, Quon JL, Sestan N, Caglayan AO, Gunel M, Louvi A . Disruptions in asymmetric centrosome inheritance and WDR62-Aurora kinase B interactions in primary microcephaly. Sci Rep, 2017,7:43708. |
[55] | Ramdas Nair A, Singh P, G Salvador arcia D, Rodriguez- Crespo D, Egger B, Cabernard C . The Microcephaly- Associated protein Wdr62/CG7337 Is required to maintain centrosome asymmetry in drosophila neuroblasts. Cell Rep, 2016,14(5):1100-1113. |
[56] | Lim NR, Shohayeb B, Zaytseva O, Mitchell N, Millard SS, Ng DCH, Quinn LM . Glial-Specific functions of microcephaly protein WDR62 and interaction with the mitotic kinase AURKA are essential for drosophila brain growth. Stem Cell Rep, 2017,9(1):32-41. |
[57] | Novorol C, Burkhardt J, Wood KJ, Iqbal A, Roque C, Coutts N, Almeida AD, He J, Wilkinson CJ, Harris WA . Microcephaly models in the developing zebrafish retinal neuroepithelium point to an underlying defect in metaphase progression. Open Biol, 2013,3(10):130065. |
[58] | Barrera JA, Kao LR, Hammer RE, Seemann J, Fuchs JL, Megraw TL . CDK5RAP2 regulates centriole engagement and cohesion in mice. Dev Cell, 2010,18(6):913-926. |
[59] | Capecchi MR, Pozner A . ASPM regulates symmetric stem cell division by tuning cyclin E ubiquitination. Nat Commun, 2015,6:8763. |
[60] | Fujimori A, Itoh K, Goto S, Hirakawa H, Wang B, Kokubo T, Kito S, Tsukamoto S, Fushiki S . Disruption of Aspm causes microcephaly with abnormal neuronal differentiation. Brain Dev, 2014,36(8):661-669. |
[61] | McIntyre RE, Lakshminarasimhan Chavali P, Ismail O, Carragher DM, Sanchez-Andrade G, Forment JV, Fu B, Del Castillo Velasco-Herrera M, Edwards A, van der Weyden L, Yang F, Sanger Mouse Genetics Project, Ramirez-Solis R, Estabel J, Gallagher FA, Logan DW, Arends MJ, Tsang SH, Mahajan VB, Scudamore CL, White JK, Jackson SP, Gergely F, Adams DJ . Disruption of mouse cenpj, a regulator of centriole biogenesis, phenocopies seckel syndrome. PLoS Genet, 2012,8(11):e1003022. |
[62] | Insolera R, Bazzi H, Shao W, Anderson KV, Shi SH . Cortical neurogenesis in the absence of centrioles. Nat Neurosci, 2014,17(11):1528-1535. |
[63] | Roque H, Wainman A, Richens J, Kozyrska K, Franz A, Raff JW . Drosophila Cep135/Bld10 maintains proper centriole structure but is dispensable for cartwheel formation. J Cell Sci, 2012,125(Pt 23):5881-5886. |
[64] | Yang YJ, Baltus AE, Mathew RS, Murphy EA, Evrony GD, Gonzalez DM, Wang EP, Marshall-Walker CA, Barry BJ, Murn J, Tatarakis A, Mahajan MA, Samuels HH, Shi Y, Golden JA, Mahajnah M, Shenhav R, Walsh CA . Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation. Cell, 2012,151(5):1097-1112. |
[65] | Hilbert M, Noga A, Frey D, Hamel V, Guichard P, Kraatz SH, Pfreundschuh M, Hosner S, Flückiger I, Jaussi R, Wieser MM, Thieltges KM, Deupi X, Müller DJ, Kammerer RA, G?nczy P, Hirono M, Steinmetz MO . SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centriole architecture. Nat Cell Biol, 2016,18(4):393-403. |
[66] | Yamamoto S, Jaiswal M, Charng WL, Gambin T, Karaca E, Mirzaa G, Wiszniewski W, Sandoval H, Haelterman NA, Xiong B, Zhang K, Bayat V, David G, Li T, Chen K, Gala U, Harel T, Pehlivan D, Penney S, Vissers LELM, de Ligt J, Jhangiani SN, Xie YJ, Tsang SH, Parman Y, Sivaci M, Battaloglu E, Muzny D, Wan YW, Liu Z, Lin-Moore AT, Clark RD, Curry CJ, Link N, Schulze KL, Boerwinkle E, Dobyns WB, Allikmets R, Gibbs RA, Chen R, Lupski JR, Wangler MF, Bellen HJ . A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell, 2014,159(1):200-214. |
[67] | Bianchi FT, Tocco C, Pallavicini G, Liu Y, Vernì F, Merigliano C, Bonaccorsi S, El-Assawy N, Priano L, Gai M, Berto GE, Chiotto AM, Sgrò F, Caramello A, Tasca L, Ala U, Neri F, Oliviero S, Mauro A, Geley S, Gatti M, Di Cunto F . Citron kinase deficiency leads to chromosomal instability and TP53-Sensitive microcephaly. Cell Rep, 2017,18(7):1674-1686. |
[68] | DiStasio A, Driver A, Sund K, Donlin M, Muraleedharan RM, Pooya S, Kline-Fath B, Kaufman KM, Prows CA, Schorry E, Dasgupta B, Stottmann RW . Copb2 is essential for embryogenesis and hypomorphic mutations cause human microcephaly. Hum Mol Genet, 2017,26(24):4836-4848. |
[69] | Fujikura K, Setsu T, Tanigaki K, Abe T, Kiyonari H, Terashima T, Sakisaka T . Kif14 mutation causes severe brain malformation and hypomyelination. PLoS One, 2013,8(1):e53490. |
[70] | Perez Y, Bar-Yaacov R, Kadir R, Wormser O, Shelef I, Birk OS, Flusser H, Birnbaum RY . Mutations in the microtubule-associated protein MAP11 (C7orf43) cause microcephaly in humans and zebrafish. Brain, 2019,142(3):574-585. |
[71] | Yang SZ, Lin FT, Lin WC . MCPH1/BRIT1 cooperates with E2F1 in the activation of checkpoint, DNA repair and apoptosis. EMBO Rep, 2008,9(9):907-915. |
[72] | Xu D, Yao M, Wang Y, Yuan L, Hoeck JD, Yu J, Liu L, Yeap YYC, Zhang W, Zhang F, Feng Y, Ma T, Wang Y, Ng DCH, Niu X, Su B, Behrens A, Xu Z . MEKK3 coordinates with FBW7 to regulate WDR62 stability and neurogenesis. PLoS Biol, 2018,16(12):e2006613. |
[73] | Luo X, Liu Y, Feng W, Lei L, Du Y, Wu J, Wang S . NUP37, a positive regulator of YAP/TEAD signaling, promotes the progression of hepatocellular carcinoma. Oncotarget, 2017,8(58):98004-98013. |
[74] | Clark DA, Mitra PP, Wang SS . Scalable architecture in mammalian brains. Nature, 2001,411(6834):189-193. |
[75] | Rakic P . A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci, 1995,18(9):383-388. |
[76] | Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA . Cerebral organoids model human brain development and microcephaly. Nature, 2013,501(7467):373-379. |
[77] | Gabriel E, Wason A, Ramani A, Gooi LM, Keller P, Pozniakovsky A, Poser I, Noack F, Telugu NS, Calegari F, ?ari? T, Hescheler J, Hyman AA, Gottardo M, Callaini G, Alkuraya FS, Gopalakrishnan J . CPAP promotes timely cilium disassembly to maintain neural progenitor pool. EMBO J, 2016,35(8):803-819. |
[78] | Gabriel E, Gopalakrishnan J. Generation of iPSC-derived human brain organoids to model early neurodevelopmental disorders. J Vis Exp, 2017, (122). |
[79] | Bartholomeusz HH, Courchesne E, Karns CM . Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults. Neuropediatrics, 2002,33(5):239-241. |
[80] | Pavone P, Praticò AD, Rizzo R, Corsello G, Ruggieri M, Parano E, Falsaperla R . A clinical review on megalencephaly: a large brain as a possible sign of cerebral impairment. Medicine, 2017,96(26):e6814. |
[81] | Courchesne E, Carper R, Akshoomoff N . Evidence of brain overgrowth in the first year of life in autism. JAMA, 2003,290(3):337-344. |
[82] | Courchesne E . Brain development in autism: early overgrowth followed by premature arrest of growth. Ment Retard Dev Disabil Res Rev, 2004,10(2):106-111. |
[83] | Klein S, Sharifi-Hannauer P, Martinez-Agosto JA . Macrocephaly as a clinical indicator of genetic subtypes in autism. Autism Res, 2013,6(1):51-56. |
[1] | 郑燕森, 卓林刚, 李大力, 刘明耀. 炎性肠病易感基因GPR35在肠炎发生发展中的功能研究[J]. 遗传, 2021, 43(2): 169-181. |
[2] | 郭佳妮, 刘帆, 王璐. 斑马鱼血液疾病模型及应用[J]. 遗传, 2020, 42(8): 725-738. |
[3] | 王一帆,李臻,潘教文,李颖秀,王庆国,管延安,刘炜. 谷子SiRLK35基因克隆及功能分析[J]. 遗传, 2017, 39(5): 413-422. |
[4] | 周金伟, 徐绮嫔, 姚婧, 余树民, 曹随忠. CRISPR/Cas9基因组编辑技术及其在动物基因组定点修饰中的应用[J]. 遗传, 2015, 37(10): 1011-1020. |
[5] | 李娇, 郭予琦, 崔伟玲, 许爱华, 田曾元. 玉米苗期SR蛋白基因家族的干旱胁迫应答[J]. 遗传, 2014, 36(7): 697-706. |
[6] | 宋辉,南志标. 蒺藜苜蓿全基因组中WRKY转录因子的鉴定与分析[J]. 遗传, 2014, 36(2): 152-168. |
[7] | 马利超,王彦荣,刘志鹏. 蒺藜苜蓿花器官特异基因的表达分析[J]. 遗传, 2012, 34(5): 621-634. |
[8] | 陈超,吴望军,熊远著. 猪ATF4基因多态性与生产性状的关联及基因表达分析[J]. 遗传, 2011, 33(12): 1347-1352. |
[9] | 张勇,陈芳源,邓敏 . 斑马鱼血液肿瘤学的研究进展[J]. 遗传, 2009, 31(9): 889-895. |
[10] | 郭予琦,田曾元,闫道良,张洁,钦佩. 盐生植物海滨锦葵幼苗盐胁迫下基因差异表达分析[J]. 遗传, 2008, 30(7): 941-950. |
[11] | 胡银岗,林凡云,王士强,何蓓如. 糜子抗旱节水相关基因PmMYB的克隆及表达分析[J]. 遗传, 2008, 30(3): 373-379. |
[12] | 杨秀兰,苏玉虹,李文龙. 遗传性白内障动物模型的研究进展[J]. 遗传, 2007, 29(2): 137-137―144. |
[13] | 陈必良,马向东,辛晓燕,王德堂,EAlbert Reece,MD. 妊娠合并糖尿病诱发胚胎先天性神经管缺陷 动物模型的MAP 激酶信号传导机制MAP[J]. 遗传, 2004, 26(5): 615-619. |
[14] | 周欢敏,李金泉,刘少卿,高佃平,赵存发,乌兰巴特尔. 动物模型BLUP法评定内蒙古白绒山羊的遗传趋势[J]. 遗传, 2000, 22(5): 298-300. |
[15] | 毛新,阿部周一,野岛孝之,吉田迪弘. 滑膜肉瘤动物模型的分子细胞遗传学研究[J]. 遗传, 1994, 16(3): 12-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: