[1] Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep sur-veying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet, 2008, 40(12): 1413–1415. <\p>
[2] Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature, 2010, 463(7280): 457–463. <\p>
[3] Cooper TA, Wan L, Dreyfuss G. RNA and disease. Cell, 2009, 136(4): 777–793. <\p>
[4] Venables JP. Unbalanced alternative splicing and its sig-nificance in cancer. Bioessays, 2006, 28(4): 378–386. <\p>
[5] Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet, 2010, 11(5): 345–355. <\p>
[6] Barash Y, Calarco JA, Gao W, Pan Q, Wang X, Shai O, Blencowe BJ, Frey BJ. Deciphering the splicing code. Nature, 2010, 465(7294): 53–59. <\p>
[7] Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T. Epigenetics in alternative pre-mRNA splicing. Cell, 2011, 144(1): 16–26. <\p>
[8] Han J, Xiong J, Wang D, Fu XD. Pre-mRNA splicing: where and when in the nucleus. Trends Cell Biol, 2011, 21(6): 336–343. <\p>
[9] Moore MJ, Proudfoot NJ. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell, 2009, 136(4): 688–700. <\p>
[10] Bird G, Zorio DA, Bentley DL. RNA polymerase II car-boxy-terminal domain phosphorylation is required for co-transcriptional pre-mRNA splicing and 3'-end formation. Mol Cell Biol, 2004, 24(20): 8963–8969. <\p>
[11] Munoz MJ, de la Mata M, Kornblihtt AR. The carboxy terminal domain of RNA polymerase II and alternative splicing. Trends Biochem Sci, 2010, 35(9): 497–504. <\p>
[12] de la Mata M, Lafaille C, Kornblihtt A R. First come, first served revisited: factors affecting the same alternative splicing event have different effects on the relative rates of intron removal. RNA, 2010, 16(5): 904–912. <\p>
[13] Fong YW, Zhou Q. Stimulatory effect of splicing factors on transcriptional elongation. Nature, 2001, 414(6866): 929–933. <\p>
[14] Lin SR, Coutinho-Mansfield G, Wang D, Pandit S, Fu XD. The splicing factor SC35 has an active role in transcrip-tional elongation. Nat Struct Mol Biol, 2008, 15(8): 819– 826. <\p>
[15] Braunschweig U, Gueroussov S, Plocik AM, Graveley BR, Blencowe BJ. Dynamic integration of splicing within gene regulatory pathways. Cell, 2013, 152(6): 1252–1269. <\p>
[16] Schor IE, Rascovan N, Pelisch F, Allo M, Kornblihtt AR. Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc Natl Acad Sci USA, 2009, 106(11): 4325–4330. <\p>
[17] Allo M, Buggiano V, Fededa JP, Petrillo E, Schor I, de la Mata M, Agirre E, Plass M, Eyras E, Elela SA, Klinck R, Chabot B, Kornblihtt AR. Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat Struct Mol Biol, 2009, 16(7): 717–724. <\p>
[18] Batsche E, Yaniv M, Muchardt C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol, 2006, 13(1): 22–29. <\p>
[19] Schor IE, Lleres D, Risso GJ, Pawellek A, Ule J, Lamond AI, Kornblihtt AR. Perturbation of chromatin structure globally affects localization and recruitment of splicing factors. PLoS ONE, 2012, 7(11): E48084. <\p>
[20] Schwartz S, Ast G. Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing. EMBO J, 2010, 29(10): 1629–1636. <\p>
[21] Spies N, Nielsen CB, Padgett RA, Burge CB. Biased chromatin signatures around polyadenylation sites and exons. Mol Cell, 2009, 36(2): 245–254. <\p>
[22] Tilgner H, Nikolaou C, Althammer S, Sammeth M, |