[1] Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep sur-veying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet, 2008, 40(12): 1413–1415. <\p>
[2] Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature, 2010, 463(7280): 457–463. <\p>
[3] Cooper TA, Wan L, Dreyfuss G. RNA and disease. Cell, 2009, 136(4): 777–793. <\p>
[4] Venables JP. Unbalanced alternative splicing and its sig-nificance in cancer. Bioessays, 2006, 28(4): 378–386. <\p>
[5] Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet, 2010, 11(5): 345–355. <\p>
[6] Barash Y, Calarco JA, Gao W, Pan Q, Wang X, Shai O, Blencowe BJ, Frey BJ. Deciphering the splicing code. Nature, 2010, 465(7294): 53–59. <\p>
[7] Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T. Epigenetics in alternative pre-mRNA splicing. Cell, 2011, 144(1): 16–26. <\p>
[8] Han J, Xiong J, Wang D, Fu XD. Pre-mRNA splicing: where and when in the nucleus. Trends Cell Biol, 2011, 21(6): 336–343. <\p>
[9] Moore MJ, Proudfoot NJ. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell, 2009, 136(4): 688–700. <\p>
[10] Bird G, Zorio DA, Bentley DL. RNA polymerase II car-boxy-terminal domain phosphorylation is required for co-transcriptional pre-mRNA splicing and 3'-end formation. Mol Cell Biol, 2004, 24(20): 8963–8969. <\p>
[11] Munoz MJ, de la Mata M, Kornblihtt AR. The carboxy terminal domain of RNA polymerase II and alternative splicing. Trends Biochem Sci, 2010, 35(9): 497–504. <\p>
[12] de la Mata M, Lafaille C, Kornblihtt A R. First come, first served revisited: factors affecting the same alternative splicing event have different effects on the relative rates of intron removal. RNA, 2010, 16(5): 904–912. <\p>
[13] Fong YW, Zhou Q. Stimulatory effect of splicing factors on transcriptional elongation. Nature, 2001, 414(6866): 929–933. <\p>
[14] Lin SR, Coutinho-Mansfield G, Wang D, Pandit S, Fu XD. The splicing factor SC35 has an active role in transcrip-tional elongation. Nat Struct Mol Biol, 2008, 15(8): 819– 826. <\p>
[15] Braunschweig U, Gueroussov S, Plocik AM, Graveley BR, Blencowe BJ. Dynamic integration of splicing within gene regulatory pathways. Cell, 2013, 152(6): 1252–1269. <\p>
[16] Schor IE, Rascovan N, Pelisch F, Allo M, Kornblihtt AR. Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc Natl Acad Sci USA, 2009, 106(11): 4325–4330. <\p>
[17] Allo M, Buggiano V, Fededa JP, Petrillo E, Schor I, de la Mata M, Agirre E, Plass M, Eyras E, Elela SA, Klinck R, Chabot B, Kornblihtt AR. Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat Struct Mol Biol, 2009, 16(7): 717–724. <\p>
[18] Batsche E, Yaniv M, Muchardt C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol, 2006, 13(1): 22–29. <\p>
[19] Schor IE, Lleres D, Risso GJ, Pawellek A, Ule J, Lamond AI, Kornblihtt AR. Perturbation of chromatin structure globally affects localization and recruitment of splicing factors. PLoS ONE, 2012, 7(11): E48084. <\p>
[20] Schwartz S, Ast G. Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing. EMBO J, 2010, 29(10): 1629–1636. <\p>
[21] Spies N, Nielsen CB, Padgett RA, Burge CB. Biased chromatin signatures around polyadenylation sites and exons. Mol Cell, 2009, 36(2): 245–254. <\p>
[22] Tilgner H, Nikolaou C, Althammer S, Sammeth M, Beato M, Valcarcel J, Guigo R. Nucleosome positioning as a determinant of exon recognition. Nat Struct Mol Biol, 2009, 16(9): 996–1001. <\p>
[23] Schwartz S, Meshorer E, Ast G. Chromatin organization marks exon-intron structure. Nat Struct Mol Biol, 2009, 16(9): 990–995. <\p>
[24] Gunderson FQ, Johnson TL. Acetylation by the transcrip-tional coactivator Gcn5 plays a novel role in co-transcriptional spliceosome assembly. PLoS Genet, 2009, 5(10): E1000682. <\p>
[25] Kolasinska-Zwierz P, Down T, Latorre I, Liu T, Liu XS, Ahringer J. Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet, 2009, 41(3): 376–381. <\p>
[26] Dhami P, Saffrey P, Bruce AW, Dillon SC, Chiang K, Bonhoure N, Koch CM, Bye J, James K, Foad NS, Ellis P, Watkins NA, Ouwehand WH, Langford C, Andrews RM, Dunham I, Vetrie D. Complex exon-intron marking by histone modifications is not determined solely by nu-cleosome distribution. PLoS ONE, 2010, 5(8): E12339. <\p>
[27] Carrillo OF, Bieberstein N, Neugebauer KM. Pause lo-cally, splice globally. Trends Cell Biol, 2011, 21(6): 328– 335. <\p>
[28] Yun MY, Wu J, Workman JL, Li B. Readers of histone modifications. Cell Res, 2011, 21(4): 564–578. <\p>
[29] Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira- Smith OM, Misteli T. Regulation of alternative splicing by histone modifications. Science, 2010, 327(5968): 996–1000. <\p>
[30] Saint-Andre V, Batsche E, Rachez C, Muchardt C. Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons. Nat Struct Mol Biol, 2011, 18(3): 337– 344. <\p>
[31] Piacentini L, Fanti L, Negri R, Del VV, Fatica A, Altieri F, Pimpinelli S. Heterochromatin protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila. PLoS Genet, 2009, 5(10): E1000670. <\p>
[32] Pradeepa MM, Sutherland HG, Ule J, Grimes GR, Bickmore WA. Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet, 2012, 8(5): E1002717. <\p>
[33] Maurer-Stroh S, Dickens NJ, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting CP. The Tudor domain 'Royal Family': Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci, 2003, 28(2): 69–74. <\p>
[34] Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H, Yu Y, Hetzel J A, Kuo F, Kim J, Cokus S J, Casero D, Bernal M, Huijser P, Clark A T, Kramer U, Merchant S S, Zhang X, Jacobsen S E, Pellegrini M. Rela-tionship between nucleosome positioning and DNA me-thylation. Nature, 2010, 466(7304): 388–392. <\p>
[35] Anastasiadou C, Malousi A, Maglaveras N, Kouidou S. Human epigenome data reveal increased CpG methylation in alternatively spliced sites and putative exonic splicing enhancers. DNA Cell Biol, 2011, 30(5): 267–275. <\p>
[36] Malousi A, Kouidou S. DNA hypermethylation of alterna-tively spliced and repeat sequences in humans. Mol Genet Genomics, 2012, 287(8): 631–642. <\p>
[37] Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature, 2011, 479(7371): 74–79. <\p>
[38] Maunakea AK, Chepelev I, Cui K, Zhao K. Intragenic DNA methylation modulates alternative splicing by re-cruiting MeCP2 to promote exon recognition. Cell Res, 2013, 23(11):1256–1269. <\p>
[39] Svejstrup JQ. Transcription. Histones face the FACT. Science, 2003, 301(5636): 1053–1055. <\p>
[40] Somesh BP, Reid J, Liu WF, Sogaard TM, Erdjument- Bromage H, Tempst P, Svejstrup JQ. Multiple mecha-nisms confining RNA polymerase II ubiquitylation to po-lymerases undergoing transcriptional arrest. Cell, 2005, 121(6): 913–923. <\p>
[41] Joshi AA, Struhl K. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell, 2005, 20(6): 971–978. <\p>
[42] Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, Shia WJ, Anderson S, Yates J, Washburn MP, Workman JL. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell, 2005, 123(4): 581– 592. <\p>
[43] Zhu H, Hinman MN, Hasman RA, Mehta P, Lou H. Regulation of neuron-specific alternative splicing of neu-rofibromatosis type 1 pre-mRNA. Mol Cell Biol, 2008, 28(4): 1240–1251. <\p>
[44] Zhou HL, Hinman MN, Barron VA, Geng C, Zhou G, Luo G, Siegel RE, Lou H. Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner. Proc Natl Acad Sci USA, 2011, 108(36): E627–E635. <\p>
[45] de Almeida SF, Grosso AR, Koch F, Fenouil R, Carvalho S, Andrade J, Levezinho H, Gut M, Eick D, Gut I, Andrau JC, Ferrier P, Carmo-Fonseca M. Splicing enhances re-cruitment of methyltransferase HYPB/Setd2 and methyla-tion of histone H3 Lys36. Nat Struct Mol Biol, 2011, 18(9): 977–983. <\p>
[46] Barski A, Cuddapah S, Cui KR, Roh TY, Schones DE, Wang ZB, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell, 2007, 129(4): 823–837. <\p>
[47] Segal E, Widom J. What controls nucleosome positions? Trends Genet, 2009, 25(8): 335–343. <\p>
[48] Talbert PB, Henikoff S. Histone variants--ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol, 2010, 11(4): 264–275.<\p> |