遗传 ›› 2014, Vol. 36 ›› Issue (11): 1112-1120.doi: 10.3724/SP.J.1005.2014.1112
袁慧军, 卢宇
收稿日期:
2014-07-01
出版日期:
2014-11-20
发布日期:
2014-10-28
作者简介:
作者/通讯袁慧军,博士,研究员,研究方向:聋病分子遗传学。Tel: 010-68156794
基金资助:
Huijun Yuan, Yu Lu
Received:
2014-07-01
Online:
2014-11-20
Published:
2014-10-28
摘要: 超过50%的耳聋由遗传基因缺陷所致,伴随着基因组学技术的发展,耳聋分子遗传学研究逐渐成为耳科学研究的前沿领域。新一代高通量测序技术的出现,提供了以数据为导向的新的遗传性疾病研究模式,革新了人们对遗传性疾病的认识过程,使得对遗传性疾病的研究策略也发生了重大转变。近年来新一代测序技术(Next generation sequencing,NGS)在耳聋研究中的应用,大大加快了耳聋基因发现的速度,并逐渐向临床应用方向转化。文章总结了遗传性耳聋的特点和研究现状,以及新一代测序技术在耳聋研究中的应用和前景,以及基于NGS技术的耳聋基因研究和临床耳聋基因诊断的发展方向。
袁慧军, 卢宇. 新一代测序技术在遗传性耳聋基因研究及诊断中的应用[J]. 遗传, 2014, 36(11): 1112-1120.
Huijun Yuan, Yu Lu. Application of next generation sequencing in gene identification and genetic diagnosis of hereditary hearing loss[J]. HEREDITAS(Beijing), 2014, 36(11): 1112-1120.
[1] 于丽玫, 曲成毅, 梁巍, 王琦, 魏志云. 中国听力残疾构成特点及康复对策. 中国听力语言康复科学杂志, 2008, (2): 21–24. [2] 中国出生缺陷防治报告. 2012. [3] MS, DeLuca AP, Taylor KR, Hoskinson DP, Hur IA, Tack D, McMordie SJ, Huygen PLM, Casavant TL, Smith RJH. A contemporary review of AudioGene audioprofiling: a machine-based candidate gene prediction tool for autosomal dominant nonsyndromic hearing loss. Laryngoscope , 2009, 119(11): 2211–2215. [4] D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet , 2003, 33(Suppl): 228–237. [5] N, Smith RJH, Van Camp G. Forty-six genes cau-sing nonsyndromic hearing impairment: which ones should be analyzed in DNA diagnostics? Mutat Res , 2009, 681(2–3): 189–196. [6] NH, Prucka SK, Woolley AL, Smith RJH. The use of genetic testing in the evaluation of hearing impairment in a child. Curr Opin Pediatr , 2005, 17(6): 709–712. [7] [8] [9] [10] P, Oitmaa E, Messner A, Hoefsloot L, Metspalu A, Schrijver I. Simultaneous multigene mutation detection in patients with sensorineural hearing loss through a novel diagnostic microarray: a new approach for newborn screening follow-up. Pediatrics , 2006, 118(3): 985–994. [11] J, Pique L, Colen T, Roberson J, Gardner P, Schrijver I. Genotyping with a 198 mutation arrayed primer extension array for hereditary hearing loss: assess-ment of its diagnostic value for medical practice. PLoS ONE , 2010, 5(7): e11804. [12] K, Manji SSM, Hutchison WM, Du Sart D, Phelan D, Dahl HHM. Detection of mutations in genes associated with hearing loss using a microarray-based approach. J Mol Diagn , 2006, 8(4): 483–489; quiz 528. [13] P, Cox S, Ebert J, Husami A, Kenna MA, Greinwald JH, Aronow BJ, Rehm HL. High-throughput detection of mutations responsible for childhood hearing loss using resequencing microarrays. BMC Biotechnol , 2010, 10: 10. [14] [15] S, Yamaguchi T, Usami SI. Application of deafness diagnostic screening panel based on deafness mutation/gene database using invader assay. Genet Test , 2007, 11(3): 333–340. [16] BG, Clark RH, Kelleher AS, Lin ZL, Spitzer AR, Pediatrix SoundGene® Study Group Principal Investigators and Contributors. Utility of genetic testing for the detection of late-onset hearing loss in neonates. Am J Audiol , 2013, 22(2): 209–215. [17] [18] A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T, Giannoukos G, Fisher S, Russ C, Gabriel S, Jaffe DB, Lander ES, Nusbaum C. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol , 2009, 27(2): 182–189. [19] A, Quackenbush J, Thompson JF. What would you do if you could sequence everything? Nat Biotechnol , 2008, 26: 1125–1133. [20] MJ, Chen R, Lam HYK, Karczewski KJ, Chen R, Euskirchen G, Butte AJ, Snyder M. Performance comparison of exome DNA sequencing technologies. Nat Biotechnol , 2011, 29: 908–914. [21] AU, Morell RJ, Belyantseva IA, Khan SY, Boger ET, Shahzad M, Ahmed ZM, Riazuddin S, Khan SN, Riazuddin S, Friedman TB. Targeted capture and next- generation sequencing identifies C9orf75, encoding taperin, as the mutated gene in nonsyndromic deafness DFNB79. Am J Hum Genet , 2010, 86(3): 378–388. [22] A, Walsh T, Akay H, Spiliopoulos M, Sakalar YB, Hasanefendioğlu-Bayrak A, Duman D, Farooq A, King MC, Tekin M. MASP1 mutations in patients with facial, umbilical, coccygeal, and auditory findings of Carnevale, Malpuech, OSA, and Michels syndromes. Am J Hum Genet , 2010, 87(5): 679–686. [23] AK, Gandia M, Frommolt P, Maak A, Wicklein EM, Thiele H, Altmuller J, Wagner F, Viñuela A, Aguirre LA, Moreno F, Maier H, Rau I, Gießelmann S, Nürnberg G, Gal A, Nürnberg P, Hübner CA, del Castillo I, Kurth I. Nonsense mutations in SMPX, encoding a protein responsive to physical force, result in X-chromosomal hearing loss. Am J Hum Genet , 2011, 88(5): 621–627. [24] GQ, Yao J, Wu B, Liu TT, Wei QJ, Liu C, Lu YJ, Chen ZB, Zheng H, Yang XN, Cao X. Identification of OSBPL2 as a novel candidate gene for progressive nonsyndromic hearing loss by whole-exome sequencing. Genet Med , 2014, doi:10.1038/gim.2014.90. [25] J, Miller KK, Yang T, Hildebrand MS, Shearer AE, DeLuca AP, Scheetz TE, Drummond J, Scherer SE, Legan PK, Goodyear RJ, Richardson GP, Cheatham MA, Smith RJ, Dallos P. Carcinoembryonic antigen-related cell adhesion molecule 16 interacts with α-tectorin and is mutated in autosomal dominant hearing loss (DFNA4). Proc Natl Acad Sci USA , 2011, 108(10): 4218–4223. [26] A, Bonnet C, Abdi S, Bouaita A, Lelli A, Hardelin JP, Schietroma C, Rous Y, Louha M, Cheknane A, Lebdi H, Boudjelida K, Makrelouf M, Zenati A, Petit C. EPS8, encoding an actin-binding protein of cochlear hair cell stereocilia, is a new causal gene for autosomal rece-ssive profound deafness. Orphanet J Rare Dis , 2014, 9: 55. [27] RLP, Lee K, Giese AP, Ansar M, Amin- Ud-Din M, Rehn K, Wang X, Aziz A, Chiu I, Hussain Ali R, Smith JD, University of Washington Center for Mend-elian Genomics, Shendure J, Bamshad M, Nickerson DA, Ahmed ZM, Ahmad W, Riazuddin S, Leal SM. Adenylate cy-c-lase 1 (ADCY1) mutations cause recessive hearing impai-r-ment in humans and defects in hair cell function and hearing in zebrafish. Hum Mol Genet , 2014, 23(12): 3289–3298. [28] G, Abdulhadi K, Buniello A, Vozzi D, Licastro D, d'Eustacchio A, Vuckovic D, Alkowari MK, Steel KP, Badii R, Gasparini P. Linkage study and exome sequencing identify a BDP1 mutation associated with hereditary hearing loss. PLoS ONE , 2013, 8(12): e80323. [29] T, Shahin H, Elkan-Miller T, Lee MK, Thornton AM, Roeb W, Abu Rayyan A, Loulus S, Avraham KB, King MC, Kanaan M. Whole exome sequencing and hom-ozygosity mapping identify mutation in the cell polarity protein GPSM2 as the cause of nonsyndromic hearing loss DFNB82. Am J Hum Genet , 2010, 87(1): 90–94. [30] AU, Santos-Cortez RLP, Morell RJ, Drummond MC, Ito T, Lee K, Khan AA, Basra MAR, Wasif N, Ayub M, Ali RA, Raza SI, University of Washington Center for Mendelian Genomics, Nickerson DA, Shendure J, Bamshad M, Riazuddin S, Billington N, Khan SN, Friedman PL, Griffith AJ, Ahmad W, Riazuddin S, Leal SM, Friedman TB. Mutations in TBC1D24, a gene associated with epilepsy, also cause nonsyndromic deafness DFNB86. Am J Hum Genet , 2014, 94(1): 144–152. [31] TJ, Richard EM, Ivanova AA, Giese APJ, Choo DI, Khan SN, Riazuddin S, Kahn RA, Riazuddin S. An alteration in ELMOD3, an Arl2 GTPase-activating protein, is associated with hearing impairment in humans. PLoS Genet , 2013, 9(9): e1003774. [32] RLP, Lee K, Azeem Z, Antonellis PJ, Pollock LM, Khan S, Irfanullah, Andrade-Elizondo PB, Chiu I, Adams MD, Basit S, Smith JD, University of Washington Center for Mendelian Genomics, Nickerson DA, McDermott BM Jr, Ahmad W, Leal SM. Mutations in KARS, encoding lysyl-tRNA synthetase, cause autosomal- recessive nonsyndromic hearing impairment DFNB89. Am J Hum Genet , 2013, 93(1): 132–140. [33] S, Aghaie A, Michalski N, Bonnet C, Weil D, Petit C. Defect in the gene encoding the EAR/EPTP dom-ain-con-taining protein TSPEAR causes DFNB98 profound deafness. Hum Mol Genet , 2012, 21(17): 3835–3844. [34] A, Kohrman DC, Naz S. A frameshift mutation in GRXCR2 causes recessively inherited hearing loss. Hum Mutat , 2014, 35(5): 618–624. [35] S, Bach E, Neuner C, Nanda I, Dysek S, Bittner RE, Keller A, Bartsch O, Mlynski R, Haaf T, Müller CR, Kunstmann E. Novel form of X-linked nonsyndromic hearing loss with cochlear malformation caused by a mutation in the type IV collagen gene COL4A6. Eur J Hum Genet , 2014, 22(2): 208–215. [36] M, Haas SA, Weegerink NJD, Oostrik J, Hu H, Hoefsloot LH, Kannan S, Huygen PLM, Pennings RJE, Admiraal RJC, Kalscheuer VM, Kunst HPM, Kremer H. Next-generation sequencing identifies mutations of SMPX, which encodes the small muscle protein, X-linked, as a cause of progressive hearing impairment. Am J Hum Genet , 2011, 88(5): 628–634. [37] SB, Walsh T, Chisholm KM, Lee MK, Thornton AM, Fiumara A, Opitz JM, Levy-Lahad E, Klevit RE, King MC. Mutations in the DBP-deficiency protein HSD17B4 cause ovarian dysgenesis, hearing loss, and ataxia of Perrault Syndrome. Am J Hum Genet , 2010, 87(2): 282–288. [38] EM, Rehman AU, Walsh T, Clayton-Smith J, Lee K, Morell RJ, Drummond MC, Khan SN, Naeem MA, Rauf B, Billington N, Schultz JM, Urquhart JE, Lee MK, Berry A, Hanley NA, Mehta S, Cilliers D, Clayton PE, Kingston H, Smith MJ, Warner TT, University of Washington Center for Mendelian Genomics, Black GC, Trump D, Davis JRE, Ahmad W, Leal SM, Riazuddin S, King MC, Friedman TB, Newman WG. Perrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease. Am J Hum Genet , 2013, 92(4): 605–613. [39] SB, Gersak K, Michaelson-Cohen R, Walsh T, Lee MK, Malach D, Klevit RE, King MC, Levy-Lahad E. Mutations in LARS2, encoding mitochondrial leucyl-tRNA synthetase, lead to premature ovarian failure and hearing loss in Perrault syndrome. Am J Hum Genet , 2013, 92(4): 614–620. [40] SB, Chisholm KM, Lynch ED, Lee MK, Walsh T, Opitz JM, Li WQ, Klevit RE, King MC. Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proc Natl Acad Sci USA , 2011, 108(16): 6543–6548. [41] CJ, Botuyan MV, Wu YH, Ward CJ, Nicholson GA, Hammans S, Hojo K, Yamanishi H, Karpf AR, Wallace DC, Simon M, Lander C, Boardman LA, Cunningham JM, Smith GE, Litchy WJ, Boes B, Atkinson EJ, Middha S, B Dyck PJ , Parisi JE, Mer G, Smith DI, Dyck PJ. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet , 2011, 43(6): 595–600. [42] BG, Hackmann K, Jones MA, Eroshkin AM, He P, Wiliams R, Bhide S, Cantagrel V, Gleeson JG, Paller AS, Schnur RE, Tinschert S, Zunich J, Hegde MR, Freeze HH. Mutations in the glycosylphosphatidylinositol gene PIGL ca-use CHIME syndrome. Am J Hum Genet , 2012, 90(4): 685–688. [43] YY, Zhang JG, Chang Q, Zeng J, Xin F, Wang JJ, Zhu QY, Wu J, Lu JQ, Guo WW, Yan XK, Jiang H, Zhou BF, Li Q, Gao X, Yuan HJ, Yang SM, Han DY, Mao ZX, Chen P, Lin X, Dai P. De novo mutation in ATP6V1B2 impairs lysosome acidification and causes dominant deafness-onychodystrophy syndrome. Cell Res , 2014, doi:10.1038/cr.2014.77. [44] AE, DeLuca AP, Hildebrand MS, Taylor KR, Gurrola J, 2nd, Scherer S, Scheetz TE, Smith RJ. Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing. Proc Natl Acad Sci USA , 2010, 107(49): 21104–21109. [45] Z, Friedman LM, Shahin H, Oron-Karni V, Kol N, Abu Rayyan A, Parzefall T, Lev D, Shalev S, Frydman M, Davidov B, Shohat M, Rahile M, Lieberman S, Levy-Lahad E, Lee MK, Shomron N, King MC, Walsh T, Kanaan M, Avraham KB. Targeted genomic capture and massively parallel sequencing to identify genes for hered-itary hearing loss in Middle Eastern families. Genome Biol , 2011, 12(9): R89. [46] WX, Qian D, Ahmad S, Mattox D, Todd NW, Han H, Huang ST, Li YH, Wang YF, Li HW, Lin X. A low-cost exon capture method suitable for large-scale screening of genetic deafness by the massively-parallel sequencing app-roach. Genet Test Mol Biomarkers , 2012, 16(6): 536–542. [47] JI, Oh SK, Kim DB, Choi SY, Kim UK, Lee KY, Lee SH. Targeted massive parallel sequencing: the effective detection of novel causative mutations associated with hear-ing loss in small families. Orphanet J Rare Dis , 2012, 7: 60. [48] H, Suzuki N, Shimizu A, Torii C, Namba K, Morimoto N, Kudoh J, Kaga K, Kosaki K, Matsunaga T. Diverse spectrum of rare deafness genes underlies early-chil-dhood hearing loss in Japanese patients: a cross-sectional, multi-center next-generation sequencing study. Orphanet J Rare Dis , 2013, 8: 172. [49] T, Wei XM, Chai YC, Li L, Wu H. Genetic etiology study of the non-syndromic deafness in Chinese Hans by targeted next-generation sequencing. Orphanet J Rare Dis , 2013, 8: 85. [50] HL. Disease-targeted sequencing: a cornerstone in the clinic. Nat Rev Genet , 2013, 14(4): 295–300. [51] SM, Koschak A, Lieb A, Gebhart M, Dafinger C, Nürnberg G, Ali A, Ahmad I, Sinnegger-Brauns MJ, Brandt N, Engel J, Mangoni ME, Farooq M, Khan HU, Nürnberg P, Striessnig J, Bolz HJ. Loss of Ca v 1.3 (CACNA1D) function in a human channelopathy with brad-ycardia and congenital deafness. Nat Neurosci , 2011, 14: 77–84. [52] M, Li XC, Ge HJ, Chen F, Han MY, Zhang YY, Kang DY, Xie WW, Gao ZY, Pan XY, Dai P, Chi FL, Chen SP, Liu P, Zhang CL, Cao JJ, Jiang H, Xu X, Wang W, Duan T. Noninvasive prenatal testing for autosomal reces-sive conditions by maternal plasma sequencing in a case of congenital deafness. Genet Med , 2014, doi:10.1038/gim. 2014.51. [53] A, Hoehndorf R, Gkoutos GV, Rebholz-Schuh-mann D. Improving disease gene prioritization by comparing the semantic similarity of phenotypes in mice with those of human diseases. PLoS ONE , 2012, 7(6): e38937. [54] M, Creanza TM, Santoro C, Tria G, Giordano A, Battagliero S, Vaccina A, Scioscia G, Leo P. Finding new genes for non-syndromic hearing loss through an in silico prioritization study. PLoS ONE , 2010, 5(9): e12742. [55] BJ, McEachin RC. Identifying hypothetical genetic influences on complex disease phenotypes. BMC Bioinform , 2009, 10(Suppl. 2): S13. [56] RS, Sundar G, Vaughan LK, Tanik MM, Arnett DK. Genetic region characterization (Gene RECQuest)- software to assist in identification and selection of candidate genes from genomic regions. BMC Res Notes , 2009, 2: 201. [57] LC, Barriot R, Yu S, Van Vooren S, Van Loo P, Coessens B, De Moor B, Aerts S, Moreau Y. ENDEAVOUR update: a web resource for gene prioritization in multiple species. Nucleic Acids Res , 2008, 36(Web Server issue): W377–W384. [58] S, Jonveaux P, Bicep C, Pierron L, Smail-Tabbone M, Devignes MD. Gene-disease relationship discovery based on model-driven data integration and database view definition. Bioinformatics , 2009, 25(2): 230–236. |
[1] | 王翠翠,袁慧军. 高通量测序技术在遗传性耳聋研究中的应用及研究进展[J]. 遗传, 2017, 39(3): 208-219. |
[2] | 邹永新,龚瑶琴. 影响RNA剪接的基因变异[J]. 遗传, 2017, 39(3): 200-207. |
[3] | 何一旻, 顾鸣敏. 肌球蛋白重链基因在人类遗传性疾病中的研究进展[J]. 遗传, 2017, 39(10): 877-887. |
[4] | 钱旭丽, 曹新. 耳聋相关基因COCH的非同义单核苷酸多态性致聋表型预测[J]. 遗传, 2015, 37(7): 664-672. |
[5] | 丁楠, 渠鸿竹, 方向东. ENCODE计划和功能基因组研究[J]. 遗传, 2014, 36(3): 237-247. |
[6] | 邵谦之, 姜毅, 吴金雨. 全基因组测序及其在遗传性疾病研究及诊断中的应用[J]. 遗传, 2014, 36(11): 1087-1098. |
[7] | 陈晟 吴志英. 重复引物PCR技术在超大片段动态突变疾病基因检测中的应用进展[J]. 遗传, 2014, 36(11): 1145-1151. |
[8] | 郭奕斌. 基因诊断中测序技术的应用及优缺点[J]. 遗传, 2014, 36(11): 1121-1130. |
[9] | 刘亚兰, 张华, 冯永. 神经嵴发育异常导致综合征型耳聋的机制[J]. 遗传, 2014, 36(11): 1131-1144. |
[10] | 梁玲芝 伍越 阳娅玲 蔡沁 肖红利 郑静 郑斌娇 唐霄雯 朱翌 吕建新 管敏鑫. 线粒体tRNAIle A4317G突变可能影响12S rRNA A1555G突变相关的耳聋表型表达[J]. 遗传, 2013, 35(6): 752-760. |
[11] | 王庭璋 单杲 徐建红 薛庆中. 基因组规模DNA甲基化测序数据预处理及表观遗传分析[J]. 遗传, 2013, 35(6): 685-684. |
[12] | 张初琴,陈波蓓,陈迎迎,刘学军,郑静,高金建,黄赛瑜,南奔宇,章誉耀,余啸,管敏鑫. 不同年龄段非综合征性耳聋常见基因检测及临床表型分析[J]. 遗传, 2013, 35(3): 352-358. |
[13] | 彭光华,郑斌娇,方芳,伍越,梁玲芝,郑静,南奔宇,余啸,唐霄雯,朱翌,吕建新,陈波蓓,管敏鑫. 25个携带线粒体12S rRNA A1555G突变的中国汉族非综合征型耳聋家系[J]. 遗传, 2013, 35(1): 62-72. |
[14] | 郑斌娇,彭光华,陈波蓓,方芳,郑静,伍越,梁玲芝,南奔宇,唐霄雯,朱翌,吕建新,管敏鑫. 浙江省非综合征型耳聋患者12S rRNA突变频谱分析[J]. 遗传, 2012, 34(6): 695-704. |
[15] | 汤海明,陈红,张静,任景怡,许宁. 新一代测序技术应用于microRNA检测[J]. 遗传, 2012, 34(6): 784-792. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: