[1] Liu ET. Functional genomics of cancer. Curr Opin Genet Dev, 2008, 18(3): 251–256. [2] Geschwind DH, Konopka G. Neuroscience in the era of functional genomics and systems biology. Nature, 2009, 461(7266): 908–915. [3] Pieroni E, de la Fuente van Bentem S, Mancosu G, Capobianco E, Hirt H, de la Fuente A. Protein networking: insights into global functional organization of proteomes. Proteomics, 2008, 8(4): 799–816. [4] Abu-Farha M, Elisma F, Zhou H, Tian R, Zhou H, Asmer MS, Figeys D. Proteomics: from technology developments to biological applications. Anal Chem, 2009, 81(12): 4585–4599. [5] Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNAworld. Genes Dev, 2009, 23(13): 1494–1504. [6] Chen PY, Meister G. MicroRNA-guided posttranscriptional gene regulation. Biol Chem, 2005, 386(12): 1205–1218. [7] Butcher LM, Beck S. Future impact of integrated high-throughput methylome analyses on human health and disease. J Genet Genomics, 2008, 35(7): 391–401. [8] Beck S, Rakyan VK. The methylome: approaches for global DNA methylation profiling. Trends Genet, 2008, 24(5): 231–237. [9] Morozova O, Marra MA. Applications of next-generation sequencing technologies in functional genomics. Genomics, 2008, 92(5): 255–264. [10] Wold B, Myers RM. Sequence census methods for functional genomics. Nat Methods, 2008, 5(1): 19–21. [11] 谭建新, 孙玉洁. 表观基因组学研究方法进展与评价. 遗传, 2009, 31(1): 3–12. [12] Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet, 2008, 9(6): 465–476. [13] Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet, 2007, 8(4): 253–262. [14] Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet, 2007, 8(4): 286–298. [15] Gondo Y. Trends in large-scale mouse mutagenesis: from genetics to functional genomics. Nat Rev Genet, 2008, 9(10): 803–810. [16] Gondo Y, Fukumura R, Murata T, Makino S. Next-generation gene targeting in the mouse for functional genomics. BMB Rep, 2009, 42(6): 315–323. [17] Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol, 2008, 26(10): 1135–1145. [18] Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet, 2008, 24(3): 133–141. [19] Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009, 10(1): 57–63. [20] Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet, 2010, 11(1): 31–46. [21] Pushkarev D, Neff NF, Quake SR. Single-molecule sequencing of an individual human genome. Nat Biotechnol, 2009, 27(9): 847–850. [22] Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, McInerney P, Thompson JF, Bowers J, Jarosz M, Milos PM. Direct RNA sequencing. Nature, 2009, 461(7265): 814–818. [23] Ozsolak F, Ting DT, Wittner BS, Brannigan BW, Paul S, Bardeesy N, Ramaswamy S, Milos PM, Haber DA. Amplification-free digital gene expression profiling from minute cell quantities. Nat Methods, 2010, 7(8): 619–621. [24] Walker A, Parkhill J. Single-cell genomics. Nat Rev Microbiol, 2008, 6(3): 176–177. [25] Ochman H. Single-cell genomics. Environ Microbiol, 2007, 9(1): 7. [26] Hamady M, Knight R. Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res, 2009, 19(7): 1141–1152. [27] Weckx S, De Vuyst L. Metagenome and metatranscriptome analysis: does the flag always cover the cargo? Int J Food Microbiol, 2009, 133(3): 292–293. [28] Baveye PC. To sequence or not to sequence the whole-soil metagenome? Nat Rev Mi |