[1] Beall CM. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci USA, 2007, 104(Suppl. 1): 8655-8660.
[2] Beall CM. Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia. Integr Comp Biol, 2006, 46(1): 18-24.
[3] Beall CM, Brittenham GM, Strohl KP, Blangero J, Williams-Blangero S, Goldstein MC, Decker MJ, Vargas E, Villena M, Soria R, Alarcon AM, Gonzales C. Hemoglo-bin concentration of high-altitude Tibetans and Bolivian Aymara. Am J Phys Anthropol, 1998, 106(3): 385-400.
[4] Wu T, Wang X, Wei C, Cheng H, Wang X, Li Y, Ge-Dong, Zhao H, Young P, Li G, Wang Z. Hemoglobin levels in Qinghai-Tibet: different effects of gender for Tibetans vs. Han. J Appl Physiol, 2005, 98(2): 598-604.
[5] Erzurum SC, Ghosh S, Janocha AJ, Xu W, Bauer S, Bryan NS, Tejero J, Hemann C, Hille R, Stuehr DJ, Feelisch M, Beall CM. Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. Proc Natl Acad Sci USA, 2007, 104(45): 17593-17598.
[6] Ivan M, Haberberger T, Gervasi DC, Michelson KS, Günzler V, Kondo K, Yang HF, Sorokina I, Conaway RC, Conaway JW, Kaelin WG Jr. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci USA, 2002, 99(21): 13459-13464.
[7] Del Peso L, Castellanos MC, Temes E, Martín-Puig S, Cuevas Y, Olmos G, Landázuri MO. The von Hippel Lin-dau/hypoxia-inducible factor (HIF) pathway regulates the transcription of the HIF-proline hydroxylase genes in re-sponse to low oxygen. J Bio Chem, 2003, 278(49): 48690-48695.
[8] Simonson TS, Yang YZ, Huff CD, Yun HX, Qin G, Witherspoon DJ, Bai ZZ, Lorenzo FR, Xing JH, Jorde LB, Prchal JT, Ge RL. Genetic evidence for high-altitude adaptation in Tibet. Science, 2010, 329(5987): 72-75.
[9] Peng Y, Yang ZH, Zhang H, Cui CY, Qi XB, Luo XJ, Tao X, Wu TY, Ouzhuluobu, Basang, Ciwangsangbu, Dan-zengduojie, Chen H, Shi H, Su B. Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Mol Biol Evol, 2011, 28(2): 1075-1081.
[10] Bigham A, Bauchet M, Pinto D, Mao XY, Akey JM, Mei R, Scherer SW, Julian CG, Wilson MJ, López HD, Brut-saert T, Parra EJ, Moore LG, Shriver MD. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet, 2010, 6(9): e1001116, doi: 10.1371/journal.pgen.1001116.
[11] Xu SH, Li SL, Yang YJ, Tan JZ, Lou HY, Jin WF, Yang L, Pan XD, Wang JC, Shen YP, Wu BL, Wang HY, Jin L. A genome-wide search for signals of high-altitude adaptation in Tibetans. Mol Biol Evol, 2011, 28(2): 1003-1011.
[12] Wang BB, Zhang YB, Zhang F, Lin HB, Wang XM, Wan N, Ye ZY, Weng HY, Zhang LL, Li X, Yan JW, Wang PP, Wu TT, Cheng LF, Wang J, Wang DM, Ma X, Yu J. On the origin of Tibetans and their genetic basis in adapting high-altitude environments. PLoS ONE, 2011, 6(2): e17002.
[13] Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res, 2005, 15(2): 97-98.
[14] Bruick RK, Mcknight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science, 2001, 294(5545): 1337-1340.
[15] van Patot MCT, Gassmann M. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2α. High Alt Med Biol, 2011, 12(2): 157-167.
[16] Tian YM, Mole DR, Ratcliffe PJ, Gleadle JM. Characterization of different isoforms of the HIF prolyl hy-droxylase PHD1 generated by alternative initiation. Bio-che J, 2006, 397(1): 179-186.
[17] Mishra A, Mohammad G, Thinlas T, Pasha MA. EGLN1 variants influence expression and SaO2 levels to associate with high-altitude pulmonary oedema and adaptation. Clin Sci, 2013, 124(7): 479-489.
[18] 王存芳, 吴常信, 李宁. 鸡缺氧诱导因子-1α基因的差异表达与低氧适应性. 遗传, 2007, 29(1): 75-80.
[19] 滑君, 付浩, 张瑞秀, 陈丹琦, 闫扬, 陈芳杰, 孙开来, 孙秀菊. 低氧模拟剂氯化钴对胃癌细胞BGC823中S100A4基因表达的影响. 遗传, 2008, 30(12): 1563-1566.
[20] 张浩, 强巴央宗, 赵春江, 鲍海港, 凌遥, 吴常信. 藏鸡诱导型一氧化氮合酶基因低氧适应功能分析. 遗传, 2009, 31(4): 400-406.
[21] Ji L D, Qiu YQ, Xu J, Irwin DM, Tam SC, Tang NL, Zhang YP. Genetic adaptation of the hypoxia-inducible factor pathway to oxygen pressure among eurasian human populations. Mol Biol Evo, 2012, 29(11): 3359-3370.
[22] Pagani L, Ayub Q, Macarthur DG, Xue Y, Baillie JK, Chen Y, Kozarewa I, Turner DJ, Tofanelli S, Bulayeva K, Kidd K, Paoli G, Tyler-Smith C. High altitude adaptation in Daghestani populations from the Caucasus. Hum Gene, 2012, 131(3): 423-433.
[23] Aggarwal S, Negi S, Jha P, Singh PK, Stobdan T, Pasha MAQ, Ghosh S, Agrawal A, Prasher B, Mukerji M. EGLN1 involvement in high-altitude adaptation revealed through genetic analysis of extreme constitution types defined in Ayurveda. Proc Natl Acad Sci USA, 2010, 107(44): 18961-18966.
[24] Beall CM, Cavalleri GL, Deng LB, Elston RC, Gao Y, Knight J, Li CH, Li JC, Liang Y, Mccormack M, Mont-gomery HE, Pan H, Robbins PA, Shianna KV, Tam SC, Tsering N, Veeramah KR, Wang W, Wangdui P, Weale ME, Xu YM, Xu Z, Yang L, Zaman MJ, Zeng CQ, Zhang L, Zhang XL, Zhaxi P, Zheng YT. Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concen-tration in Tibetan highlanders. Proc Natl Acad Sci USA, 2010, 107(25): 11459-11464. |