遗传 ›› 2020, Vol. 42 ›› Issue (6): 565-576.doi: 10.16288/j.yczz.19-330
王小娟1,2, 钱恩芳1, 李悦2, 宋正阳1,2, 赵慧2, 谢何鑫2, 李彩霞1,2, 黄江1, 江丽2
收稿日期:
2019-12-26
修回日期:
2020-04-14
出版日期:
2020-06-20
发布日期:
2020-04-17
作者简介:
王小娟,硕士研究生,专业方向:法医物证学。E-mail:757164796@qq.com
基金资助:
Xiaojuan Wang1,2, Enfang Qian1, Yue Li2, Zhengyang Song1,2, Hui Zhao2, Hexin Xie2, Caixia Li1,2, Jiang Huang1, Li Jiang2
Received:
2019-12-26
Revised:
2020-04-14
Online:
2020-06-20
Published:
2020-04-17
Supported by:
摘要:
藏族为中国西南地区典型的少数民族,分为卫藏、康巴、安多和嘉绒等多个支系。然而,对藏族支系人群的遗传结构,特别是各分支人群的父系、母系遗传结构却缺乏深度解析。本研究基于个体水平的常染色体、父系来源的Y染色体和母系来源的线粒体3个类别遗传信息,对西藏地区卫藏藏族、四川甘孜地区康巴藏族、青海地区安多藏族和四川阿坝地区嘉绒藏族共4个藏族群体进行研究,以揭示其遗传亚结构关系。采用微测序技术检测各位点分型,利用PowerPlex ?Y23和DNATyper TM Y26试剂盒检测Y-STRs基因座分型,通过热图和主成分分析、祖先成分分析、单倍群频率统计、网络图及多维尺度分析等探讨其遗传亚结构。结果表明,常染色体和Y染色体遗传标记可将4个藏族人群分为3类:青藏高原的卫藏藏族为一类,高原周边地区的康巴藏族和安多藏族的遗传结构类似分为一类,“藏彝走廊”中嘉绒藏族的遗传结构与其他藏族人群差异显著而为一类。不同藏族分支人群在线粒体遗传信息方面无明显差异性。上述多类别遗传信息的分析结果为深入了解藏族不同分支人群的遗传亚结构提供了新视角。
王小娟, 钱恩芳, 李悦, 宋正阳, 赵慧, 谢何鑫, 李彩霞, 黄江, 江丽. 中国西南地区藏族人群遗传亚结构研究[J]. 遗传, 2020, 42(6): 565-576.
Xiaojuan Wang, Enfang Qian, Yue Li, Zhengyang Song, Hui Zhao, Hexin Xie, Caixia Li, Jiang Huang, Li Jiang. A genetic sub-structure study of the Tibetan population in Southwest China[J]. Hereditas(Beijing), 2020, 42(6): 565-576.
表2
藏族人群Y-SNPs单倍群谱系树及频率分布"
单倍群谱系树 | 西藏藏族 (CTT) | 四川甘孜藏族 (CTG) | 青海藏族 (CTQ) | 四川阿坝藏族 (CTA) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | ||||||||||||||
M168 | CT | 89 | 100 | 88 | 100 | 82 | 100 | 38 | 100 | ||||||||||||
M130 | C | 2 | 2.25 | 2 | 2.27 | 2 | 2.44 | 1 | 2.63 | ||||||||||||
M174 | D | 64 | 71.91 | 55 | 62.50 | 48 | 58.54 | 13 | 34.21 | ||||||||||||
M15 | D1a1 | 16 | 17.98 | 14 | 15.91 | 8 | 9.76 | 10 | 26.32 | ||||||||||||
P99 | D1a2 | 48 | 53.93 | 41 | 46.59 | 40 | 48.78 | 3 | 7.89 | ||||||||||||
M96 | E | 1 | 1.12 | 1 | 1.14 | 1 | 1.22 | ||||||||||||||
M89 | F | 22 | 24.72 | 30 | 34.09 | 31 | 37.80 | 24 | 63.16 | ||||||||||||
M201 | G | 1 | 1.22 | ||||||||||||||||||
M304 | J | 4 | 4.88 | ||||||||||||||||||
M9 | K | 22 | 24.72 | 30 | 34.09 | 26 | 31.71 | 24 | 63.16 | ||||||||||||
M231 | N | 5 | 5.62 | 6 | 6.82 | 4 | 4.88 | ||||||||||||||
M242 | Q | 2 | 2.25 | 1 | 1.22 | ||||||||||||||||
M207 | R | 1 | 1.14 | 5 | 6.10 | 1 | 2.63 | ||||||||||||||
M175 | O | 15 | 16.85 | 23 | 26.14 | 16 | 19.51 | 23 | 60.53 | ||||||||||||
M122 | O2 | 15 | 16.85 | 21 | 23.86 | 12 | 14.63 | 20 | 52.63 | ||||||||||||
M324 | O2a | 15 | 16.85 | 21 | 23.86 | 11 | 13.41 | 20 | 52.63 | ||||||||||||
L127.1 | O2a1 | 1 | 1.12 | 3 | 3.41 | 5 | 6.10 | 5 | 13.16 | ||||||||||||
P201 | O2a2 | 14 | 15.73 | 18 | 20.45 | 6 | 7.32 | 15 | 39.47 | ||||||||||||
M117 | O2a2b1a1 | 12 | 13.48 | 10 | 11.36 | 4 | 4.88 | 8 | 21.05 |
表3
藏族人群mt-SNPs单倍群谱系树及频率分布"
单倍群谱系树 | 西藏藏族 (CTT) | 四川甘孜藏族 (CTG) | 青海藏族 (CTQ) | 四川阿坝藏族 (CTA) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | ||||||||
A1018G | L3 | 88 | 100.00 | 87 | 100.00 | 79 | 100.00 | 37 | 100.00 | ||||||
G10400A | M | 59 | 67.05 | 54 | 62.07 | 48 | 60.76 | 21 | 56.76 | ||||||
T4715C | M8 | 5 | 5.68 | 9 | 10.34 | 3 | 3.80 | 6 | 16.22 | ||||||
A13263G | C | 3 | 3.41 | 8 | 9.20 | 2 | 2.53 | 3 | 8.11 | ||||||
G4491A | M9 | 19 | 21.59 | 13 | 14.94 | 11 | 13.92 | 1 | 2.70 | ||||||
A3394G | M9a'b | 16 | 18.18 | 9 | 10.34 | 8 | 10.13 | 1 | 2.70 | ||||||
C7697T | M9a1a1c1b | 11 | 12.50 | 5 | 5.75 | 2 | 2.53 | ||||||||
G14569A | M12'G | 13 | 14.77 | 10 | 11.49 | 7 | 8.86 | 4 | 10.81 | ||||||
A4833G | G | 13 | 14.77 | 10 | 11.49 | 7 | 8.86 | 4 | 10.81 | ||||||
T4561C | M62'68 | 1 | 1.27 | ||||||||||||
G2735A | M62 | 1 | 1.27 | ||||||||||||
C4883T | M80'D | 15 | 17.05 | 19 | 21.84 | 24 | 30.38 | 9 | 24.32 | ||||||
C5178A | D | 15 | 17.05 | 19 | 21.84 | 24 | 30.38 | 9 | 24.32 | ||||||
C3010T | D4 | 10 | 11.36 | 14 | 16.09 | 16 | 20.25 | 7 | 18.92 | ||||||
C5262T | D4j1 | 4 | 4.55 | 3 | 3.45 | 2 | 2.53 | ||||||||
C10873T | N | 29 | 32.95 | 33 | 37.93 | 31 | 39.24 | 16 | 43.24 | ||||||
A663G | A | 10 | 11.36 | 5 | 5.75 | 10 | 12.66 | 3 | 8.11 | ||||||
T12705 | R | 19 | 21.59 | 26 | 29.89 | 21 | 26.58 | 12 | 32.43 | ||||||
C10310T | F | 11 | 12.50 | 14 | 16.09 | 10 | 12.66 | 3 | 8.11 |
附表2
网络图分析中各Y-STR基因座的权重值信息"
基因座 | 权重 | 突变率 | CTT | CTG | CTQ | CTA |
---|---|---|---|---|---|---|
DYS458 | 1 | 0.006 | 0.7750 | 0.7704 | 0.7943 | 0.8208 |
DYS392 | 1 | 0.001 | 0.6545 | 0.7348 | 0.7124 | 0.8350 |
DYS390 | 1 | 0.002 | 0.7421 | 0.7396 | 0.7185 | 0.6999 |
DYS389 II | 2 | 0.004 | 0.6117 | 0.7565 | 0.7127 | 0.7112 |
DYS439 | 2 | 0.005 | 0.6411 | 0.6108 | 0.6960 | 0.7098 |
DYS389 I | 2 | 0.003 | 0.6540 | 0.6742 | 0.6501 | 0.6316 |
DYS635 | 2 | 0.004 | 0.5924 | 0.6063 | 0.6308 | 0.7269 |
DYS448 | 2 | 0.002 | 0.5812 | 0.6074 | 0.6208 | 0.7226 |
DYS456 | 2 | 0.004 | 0.5687 | 0.5927 | 0.6399 | 0.6821 |
GATA-H4 | 3 | 0.003 | 0.5927 | 0.6408 | 0.5652 | 0.5576 |
DYS533 | 3 | 0.004 | 0.5457 | 0.5798 | 0.5815 | 0.5875 |
DYS393 | 4 | 0.001 | 0.4814 | 0.5154 | 0.5580 | 0.5349 |
DYS19 | 4 | 0.002 | 0.4990 | 0.5256 | 0.5363 | 0.5021 |
DYS438 | 5 | 0.001 | 0.3933 | 0.4762 | 0.5434 | 0.4964 |
DYS437 | 6 | 0.001 | 0.3202 | 0.3145 | 0.2906 | 0.5220 |
DYS391 | 6 | 0.002 | 0.2743 | 0.3195 | 0.2611 | 0.3514 |
[1] | Shi S . Tibetan regional characteristics and the related problems-and the Kham characteristic. J Qinghai Natl Inst(Soc Sci), 2015,41(1):207-208. |
石硕 . 藏族的地域特点及相关问题——兼论康区之特点. 青海民族大学学报(社会科学版), 2015,41(1):207-208. | |
[2] | Dejizhuoga , The origin of Jirarong Tibetan. Tibet Stud, 2004, ( 2):51-56. |
德吉卓嘎 . 试论嘉绒藏族的族源. 西藏研究, 2004, ( 2):51-56. | |
[3] | Majmundar AJ, Wong WJ, Simon MC . Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell, 2010,40(2):294-309. |
[4] | Beall CM . Tibetan and Andean Patterns of adaptation to high-altitude hypoxia. Hum Biol, 2000,72(1):201-228. |
[5] | Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZXP, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, Zheng HC, Liu T, He WM, Li K, Luo RB, Nie XF, Wu HL, Zhao MR, Cao HZ, Zou J, Shan Y, Li SZ, Yang Q, Asan, Ni PX, Tian G, Xu JM, Liu X, Jiang T, Wu RH, Zhou GY, Tang MF, Qin JJ, Wang T, Feng SJ, Li GH, Huasang, Luosang J, Wang W, Chen F, Wang YD, Zheng XG, Li Z, Bianba Z, Yang G, Wang XP, Tang SH, Gao GY, Chen Y, Luo Z, Gusang L, Cao Z, Zhang QH, Ouyang WH, Ren XL, Liang HQ, Zheng HS, Huang YB, Li JX, Bolund L, Kristiansen K, Li YR, Zhang Y, Zhang XQ, Li RQ, Li SG, Yang HM, Nielsen R, Wang J, Wang J. Sequencing of 50 human exomes reveals adaptation to high altitude. Science, 2010,329(5987):75-78. |
[6] | Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, Prchal JT, Ge R . Genetic evidence for high-altitude adaptation in Tibet. Science, 2010,329(5987):72-75. |
[7] | Huerta-Sánchez E, Jin X, Asan, Bianba Z, Peter BM, Vinckenbosch N, Liang Y, Yi X, He M, Somel M, Ni P, Wang B, Ou X, Huasang, Luosang J, Cuo ZX, Li K, Gao G, Yin Y, Wang W, Zhang X, Xu X, Yang H, Li Y, Wang J, Wang J, Nielsen R. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 2014,512(7513):194-197. |
[8] | Jiang L, Peng JX, Huang MS, Liu J, Wang L, Ma Q, Zhao H, Yang X, Ji AQ, Li CX . Differentiation analysis for estimating individual ancestry from the Tibetan Plateau by an archaic altitude adaptation EPAS1 haplotype among East Asian populations. Int J Legal Med, 2018,132(50):1527-1535. |
[9] | Xiang K, Ouzhuluobu, Peng Y, Yang Z, Zhang X, Cui C, Zhang H, Li M, Zhang Y, Bianba, Gonggalanzi, Basang, Ciwangsangbu, Wu T, Chen H, Shi H, Qi X, Su B,. Identification of a Tibetan-specific mutation in the hypoxic gene EGLN1 and its contribution to high-altitude adaptation. Mol Biol Evol, 2013,30(8):1889-1898. |
[10] | Wen B . Y chromosome, mtDNA polymorphism and genetic structure of East Asian population [Dissertation]. Shanghai: Fudan Univ, 2004. |
文波 . Y染色体、mtDNA多态性与东亚人群的遗传结构[学位论文]. 复旦大学, 2004. | |
[11] | Hammer MF, Karafet TM, Park H, Omoto K, Harihara S, Stoneking M, Horai S . Dual origins of the Japanese: common ground for hunter-gatherer and farmer Y chromosomes. J Hum Genet, 2006,51(1):47-58. |
[12] | Thangaraj K, Singh L, Reddy AG, Rao VR, Sehgal SC, Underhill PA, Pierson M, Frame IG, Hagelberg E . Genetic affinities of the Andaman Islanders, a vanishing human population. Curr Biol, 2003,13(2):86-93. |
[13] | Karafet T, Xu L, Du R, Wang W, Feng S, Wells RS, Redd AJ, Zegura SL, Hammer MF . Paternal population history of East Asia: sources, patterns, and microevolutionary processes. Am J Hum Genet, 2001,69(3):615-628. |
[14] | Bhandari S, Zhang XM, Cui CY, Bianba, Liao SY, Peng Y, Zhang H, Xiang K, Shi H, Ouzhuluobu, Baimakongzhu, Gonggalanzi, Liu SM, Gengdeng, Wu TY, Qi XB, Su B. Genetic evidence of a recent Tibetan ancestry to Sherpas in the Himalayan region. Sci Rep, 2015,5:16249. |
[15] | Huang MS, Ma Q, Wang L, Ma X, Li CX, Jiang L . The study of Tibetan ancestry informative SNPs on high-altitude adaptive genes. Chin J Foren Med, 2017,32(6):588-599. |
黄美莎, 马泉, 王玲, 马新, 李彩霞, 江丽 . 高原适应基因中藏族祖先信息位点的研究. 中国法医学杂志, 2017,32(6):588-599. | |
[16] | Liu J, Li S, Jiang L, Zhao L, Zhao WT, Feng L, Liu HB, Ji AQ, Li CX . DNA ancestry analyzer: an automatic program for ancestry inference of unknown individuals. Life Sci Res, 2018,22(1):3-7. |
刘京, 李盛, 江丽, 赵蕾, 赵雯婷, 丰蕾, 刘海渤, 季安全, 李彩霞 . 对于未知来源个体进行族群推断的自动分析系统. 生命科学研究, 2018,22(1):3-7. | |
[17] | Karafet TM, Mendez FL, Meilerman MB, Underhill PA, Zegura SL, Hammer MF . New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree. Genome Res, 2008,18(5):830-838. |
[18] | Bandelt HJ, Forster P, Röhl A . Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol, 1999,16(1):37-48. |
[19] | Wang H, Mao J, Xia Y, Bai XG, Zhu WQ, Peng D, Liang WB . Genetic polymorphisms of 17 Y-chromosomal STRs in the Chengdu Han population of China. Int J Legal Med, 2017,131(4):967-968. |
[20] | Hidding M, Schmitt C . Haplotype frequencies and population data of nine Y-chromosomal STR polymorphisms in a German and a Chinese population. Forensic Sci Int, 2000,113(1-3):47-53. |
[21] | Shi MS, Li YB, Tang JP, Zhang HJ, Hou YP . Southwest China Han Population data for nine Y-STR loci by multiplex polymerase chain reaction. J Forensic Sci, 2007,52(1):228-230. |
[22] | Fan GY, An YR, Peng CX, Deng JL, Pan LP, Ye Y . Forensic and phylogenetic analyses among three Yi populations in Southwest China with 27 Y chromosomal STR loci. Int J Legal Med, 2018,133(3):795-797. |
[23] | He GL, Wang Z, Su YD, Zou X, Wang MG, Chen X, Gao B, Liu J, Wang SY, Hou YP . Genetic structure and forensic characteristics of Tibeto-Burman-speaking Ü-Tsang and Kham Tibetan Highlanders revealed by 27 Y-chromosomal STRs. Sci Rep, 2019,9(1):7739. |
[24] | Zhao Q, Bian Y, Zhang S, Zhu R, Zhou W, Gao Y, Li C . Population genetics study using 26 Y-chromosomal STR loci in the Hui ethnic group in China. Forensic Sci Int Genet, 2017,28:e26-e27. |
[25] | Xie MK, Song F, Li JN, Lang M, Luo HB, Wang Z, Wu J, Li CZ, Tian CC, Wang WZ, Ma H, Song Z, Fan YJ, Hou YP . Genetic substructure and forensic characteristics of Chinese Hui populations using 157 Y-SNPs and 27 Y-STRs. Forensic Sci Int Genet, 2019,41:11-18. |
[26] | Nothnagel M, Fan GY, Guo F, He YF, Hou YP, Hu SP, Huang J, Jiang XH, Kim W, Kim K, Li CT, Li H, Li LM, Li SL, Li Z, Liang WB, Liu C, Lu D, Luo HB, Nie SJ, Shi MS, Sun HY, Tang JP, Wang L, Wang CC, Wang D, Wen SQ, Wu HY, Wu WW, Xing JX, Yan JW, Yan S, Yao HB, Ye Y, Yun LB, Zeng ZS, Zha L, Zhang SH, Zheng XF, Willuweit S, Roewer L . Revisiting the male genetic landscape of China: a multi-center study of almost 38,000 Y-STR haplotypes. Hum Genet, 2017,136(5):485-497. |
[27] | Lang M, Liu H, Song F, Qiao XH, Ye Y, Ren H, Li JN, Huang J, Xie MK, Chen SJ, Song MY, Zhang YF, Qian XQ, Yuan TX, Wang Z, Liu YM, Wang MG, Liu YC, Liu J, Hou YP . Forensic characteristics and genetic analysis of both 27 Y-STRs and 143 Y-SNPs in Eastern Han Chinese population. Forensic Sci Int Genet, 2019,42:e13-e20. |
[28] | Kwak KD, Jin HJ, Shin DJ, Kim JM, Roewer L, Krawczak M, Tyler-Smith C, Kim W . Y-chromosomal STR haplotypes and their applications to forensic and population studies in east Asia. Int J Legal Med, 2005,119(4):195-201. |
[29] | Bigham AW, Lee FS . Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes Dev, 2014,28(20):2189-2204. |
[30] | Peng Y, Yang ZH, Zhang H, Cui CY, Qi XB, Luo XJ, Tao X, Wu TY, Ouzhuluobu, Basang, Ciwangsangbu, Danzengduojie, Chen H, Shi H, Su B. Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Mol Biol Evol, 2011,28(2):1075-1081. |
[31] | Ke JK . A study of polymorphism sites of HIF-1α and HIF-2α gene in three Tibetan groups of different altitude [Dissertation]. Peking Union Med Coll, 2010. |
柯金坤 . 不同海拔三个藏族人群HIF-1α基因与HIF-2α基因多态位点的比较研究[学位论文]. 北京协和医学院, 2010. | |
[32] | Deng L, Zhang C, Yuan K, Gao Y, Pan YW, Ge XL, He YX, Yuan Y, Lu Y, Zhang XX, Chen H, Lou HY, Wang XJ, Lu DS, Liu JJ, Tian L, Feng QD, Khan A, Yang YJ, Jin ZB, Yang J, Lu F, Qu J, Kang LL, Su B, Xu SH . Prioritizing natural-selection signals from the deep-sequencing genomic data suggests multi-variant adaptation in Tibetan highlanders. Natl Sci Rev, 2019,6(6):1201-1222. |
[33] | Ouzhuluobu, He YX, Lou HY, Cui CY, Deng L, Gao Y, Zheng WS, Guo YB, Wang XJ, Ning ZL, Li J, Li B, Bai CJ, Baimakangzhuo, Gonggalanzi, Dejiquzong, Bianba, Duojizhuoma Liu SM, Wu TY, Xu SH, Qi XB, Su B,. De novo assembly of a Tibetan genome and identification of novel structural variants associated with high-altitude adaptation. Natl Sci Rev, 2019,7(2):391-402. |
[34] | Zhang Q, Ping J, Zhang HX, Kang B, Li YF, Zhou GQ . Genetic association of MKL1 gene polymorphisms with the high-altitude adaptation. Hereditas(Beijing), 2019,41(7):634-643. |
张晴, 平杰, 张昊翔, 康波, 李元丰, 周钢桥 . MKL1基因多态性与高原环境适应性的遗传关联研究. 遗传, 2019,41(7):634-643. | |
[35] | Wang CC, Li H . Inferring human history in East Asia from Y chromosomes. Investig Genet, 2013,4(1):11. |
[36] | Qi XB, Cui CY, Peng Y, Zhang XM, Yang ZH, Zhong H, Zhang H, Xiang K, Cao XY, Wang Y, Ouzhuluobu, Basang, Ciwangsangbu, Bianba, Gonggalanzi, Wu TY, Chen H, Shi H, Su B. Genetic evidence of paleolithic colonization and neolithic expansion of modern humans on the Tibetan Plateau. Mol Biol Evol, 2013,30(8):1761-1778. |
[37] | Wen B, Xie X, Gao S, Li H, Shi H, Song X, Qian T, Xiao C, Jin J, Su B, Lu D, Chakraborty R, Jin L . Analyses of genetic structure of Tibeto-Burman populations reveals sex-biased admixture in southern Tibeto-Burmans. Am J Hum Genet, 2004,74(5):856-865. |
[38] | Cavalli-Sforza LL, Feldman MW . The application of molecular genetic approaches to the study of human evolution. Nat Genet, 2003,33(Suppl.):266-275. |
[39] | Chu X, Shan KR, Wen B, Qi XL, Li Y, Wu CX, Liu X, Zhao Y, Ren XL, Jin L . Analysis of polymorphisms in Y-DNA haplotypes and mtDNA haplogroups in Yao ethnic group from Guizhou. Hereditas(Beijing), 2006,28(2):153-158. |
褚迅, 单可人, 文波, 齐晓岚, 李毅, 吴昌学, 刘烜, 赵艳, 任锡麟, 金力 . 贵州瑶族3支系Y-DNA及线粒体DNA序列多态性分析. 遗传, 2006,28(2):153-158. | |
[40] | Wang XQ, Wang CC, Deng QY, Li H. Genetic analysis of Y chromosome and mitochondrial DNA poly-morphism of Mulam ethnic group in Guangxi, China. Hereditas (Beijing), 2013,35(2):168-174. |
王晓庆, 王传超, 邓琼英, 李辉 . 广西仫佬族Y染色体和mtDNA的遗传结构分析. 遗传, 2013,35(2):168-174. | |
[41] | Gu ML, Wang YJ, Shi L, Jiang F, Qiu MJ, Lin KQ, Tao YF, Shi L, Huang XQ, Liu B, Chu JY . Comparative analysis of the complete mitochondrial genome between Tibetan and Han population. Chin J Med Genet, 2008,25(4):382-386. |
顾明亮, 汪业军, 史磊, 姜枫, 邱梦洁, 林克勤, 陶玉芬, 史荔, 黄小琴, 刘斌, 褚嘉佑 . 藏汉民族线粒体基因组全序列的比较研究. 中华医学遗传学杂志, 2008,25(4):382-386. | |
[42] | Zhao M, Kong QP, Wang HW, Peng MS, Xie XD, Wang WZ, Jia yang, Duan JG, Cai MC, Zhao SN, Cidanping cuo, Tu YQ, Wu SF, Yao YG, Bandelt HJ, Zhang YP. Mitochondrial genome evidence reveals successful Late Paleolithic settlement on the Tibetan Plateau. Proc Natl Acad Sci USA, 2009,106(50):21230-21235. |
[43] | Qin ZD, Yang YJ, Kang LL, Yan S, Cho K, Cai XY, Lu Y, Zheng HX, Zhu DC, Fei DM, Li SL, Jin L, Li H . A mitochondrial revelation of early human migrations to the Tibetan Plateau before and after the last glacial maximum. Am J Phys Anthropol, 2010,143(4):555-569. |
[44] | Peng MS, Palanichamy MG, Yao YG, Mitra B, Cheng YT, Zhao M, Liu J, Wang HW, Pan H, Wang WZ, Zhang AM, Zhang W, Wang D, Zou Y, Yang Y, Chaudhuri TK, Kong QP, Zhang YP . Inland post-glacial dispersal in East Asia revealed by mitochondrial haplogroup M9a'b. BMC Biol, 2011,9:2. |
[45] | Soares P, Trejaut JA, Loo JH, Hill C, Mormina M, Lee CL, Chen YM, Hudjashov G, Forster P, Macaulay V, Bulbeck D, Oppenheimer S, Lin M, Richards MB . Climate change and postglacial human dispersals in southeast Asia. Mol Biol Evol, 2008,25(6):1209-1218. |
[46] | Meng M . Exploration of the relationship of Yi and Qiang in the Southwest ethnic groups of Han dynasty. Hist Res, 1985,1:11-32. |
蒙默 . 试论汉代西南民族中的“夷”与“羌”. 历史研究, 1985,1:11-32. | |
[47] | Zheng D, Zhang QS, Wu SH . Mountain Geoecology and Sustainable Development of the Tibetan Plateau. Geojournal Library, 2000,57(2):203-204. |
[48] | Wang CM . The changes of population size and structure in Garze prefecture based on the census data. J Sichuan Univ Natl, 2013,22(3):58-67. |
王长明 . 基于人口普查数据的甘孜州人口规模与结构变化. 四川民族学院学报, 2013,22(3):58-67. | |
[49] | Li Q . The relationship between Jiarong, Jialiangyi, Ranmang and Ge populations - and explore the origin of Jiarong Tibetan. J Sichuan Univ Natl, 2010,19(4):1-6. |
李青 . 试论嘉绒、嘉良夷、冉駹与戈人的关系——兼论嘉绒藏族的族源. 四川民族学院学报, 2010,19(4):1-6. | |
[50] | Xie L . On the cultural reform of the Han-Tibetan intermarriage and its evolution. J Neijiang Norm Univ, 2006,21(1):147-149. |
谢蕾 . 藏汉通婚的文化整合及演变. 内江师范学院学报, 2006,21(1):147-149. | |
[51] | Yan MS. History of Marriage in Ancient China. Guizhou: Guizhou Ethnic Publishing House, 2003. |
阎明恕 . 中国古代和亲史. 贵州: 贵州民族出版社, 2003. |
[1] | 王飞, 王萌, 张兴华, 宇克莉, 郑连斌, 杨亚军. 中国西南地区3个隔离人群遗传亚结构分析[J]. 遗传, 2022, 44(5): 424-431. |
[2] | 文子龙, 赵毅强. 群体遗传学下动物驯化研究进展[J]. 遗传, 2021, 43(3): 226-239. |
[3] | 李茜, 王浩宇, 曹悦岩, 朱强, 舒潘寅, 侯婷芸, 王雨婷, 张霁. 微单倍型遗传标记的法医基因组学研究[J]. 遗传, 2021, 43(10): 962-971. |
[4] | 胡健,周逸人,丁佳琳,王志远,刘凌,王业开,娄慧玲,乔守怡,吴燕华. ABO血型综合实验基因分型技术简化及其群体遗传分析拓展[J]. 遗传, 2017, 39(5): 423-429. |
[5] | 高峰, 李海鹏. 群体遗传学模拟软件应用现状[J]. 遗传, 2016, 38(8): 707-717. |
[6] | 王云生. 基于高通量测序的植物群体基因组学研究进展[J]. 遗传, 2016, 38(8): 688-699. |
[7] | 刘娟, 孙艳, 姜强, 杨春红, 黄金明, 李建斌, 侯明海, 仲跻峰, 王长法, 刘保申. INCENP基因功能性单倍型可调控启动子活性并影响公牛精液品质[J]. 遗传, 2016, 38(1): 62-71. |
[8] | 李骞 刘舒媛 林克勤 孙浩 于亮 黄小琴 褚嘉祐 杨昭庆. EGLN1基因6个单核苷酸多态性与高海拔低氧适应的相关性[J]. 遗传, 2013, 35(8): 992-998. |
[9] | 阮清伟 俞卓伟 保志军 马永兴. 免疫基因多态性与衰老和增龄相关疾病关系[J]. 遗传, 2013, 35(7): 813-822. |
[10] | 彭光华,郑斌娇,方芳,伍越,梁玲芝,郑静,南奔宇,余啸,唐霄雯,朱翌,吕建新,陈波蓓,管敏鑫. 25个携带线粒体12S rRNA A1555G突变的中国汉族非综合征型耳聋家系[J]. 遗传, 2013, 35(1): 62-72. |
[11] | 百茹峰,杨利海,袁丽,梁权赠,鲁涤,杨雪,石美森. 福建畲族群体17个Y-STR基因座单倍型及遗传关系[J]. 遗传, 2012, 34(8): 1020-1030. |
[12] | 舒伟,林有坤,华荣,罗彦彦,方玲,许淑茹,何娜,马军,胡启平,李晓龙,袁志刚. 一个中国汉族皮肤和粘膜多发静脉血管畸形家系的单倍型分析[J]. 遗传, 2012, 34(4): 431-436. |
[13] | 宁启兰,马旭东,焦李子,牛晓蓉,李建鹏,王彬,张欢,马捷. 基于核心家系的EGR3基因与精神分裂症的关联研究[J]. 遗传, 2012, 34(3): 307-314. |
[14] | 彭冬铂,姜正文,孙斯平,李才华,卢大儒. 人类Y染色体36个新STR位点的筛选与鉴定[J]. 遗传, 2012, 34(11): 1409-1416. |
[15] | 石美森,百茹峰,傅博. 山西汉族17个Y-STR基因座遗传多态性及遗传关系[J]. 遗传, 2011, 33(3): 228-238. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: