遗传 ›› 2015, Vol. 37 ›› Issue (8): 777-792.doi: 10.16288/j.yczz.15-018
周菲, 路史展, 高亮, 张娟娟, 林拥军
收稿日期:
2015-01-06
修回日期:
2015-04-12
出版日期:
2015-08-20
发布日期:
2015-08-20
通讯作者:
林拥军,博士,教授,研究方向:转基因抗虫水稻培育。E-mail: yongjunlin@mail.hzau.edu.cn
作者简介:
周菲,博士,副教授,研究方向:质体生物学及生物技术。E-mail: zhoufei@mail.hzau.edu.cn
基金资助:
Fei Zhou, Shizhan Lu, Liang Gao, Juanjuan Zhang, Yongjun Lin
Received:
2015-01-06
Revised:
2015-04-12
Online:
2015-08-20
Published:
2015-08-20
摘要: 植物质体转化技术通过同源重组实现定点整合,与细胞核基因工程相比,使外源基因表达更为精确、安全和高效。该技术在基础研究中为叶绿体功能基因组研究提供了有效手段,同时在应用方面为外源基因表达提供了理想的平台,已成为植物遗传育种的一种新策略。本文总结了近年来质体基因工程在转化体系的建立和优化上的新思路,着重阐述了利用质体转化技术在遗传育种中提高作物抗性、改良品质等应用领域的最新研究进展。克服质体转化技术在作物遗传育种中面临的难题,必将为作物育种的发展带来新的绿色革命。
周菲, 路史展, 高亮, 张娟娟, 林拥军. 植物质体基因工程:新的优化策略及应用[J]. 遗传, 2015, 37(8): 777-792.
Fei Zhou, Shizhan Lu, Liang Gao, Juanjuan Zhang, Yongjun Lin. Plastid genome engineering: novel optimization strategies and applications[J]. HEREDITAS(Beijing), 2015, 37(8): 777-792.
[1] Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes . Nat Rev Genet , 2004, 5(2): 123-135. [2] Bock R, Timmis JN. Reconstructing evolution: gene transfer from plastids to the nucleus . BioEssays , 2008, 30(6): 556-566. [3] Sugiura M. The chloroplast genome . Plant Mol Biol , 1992, 19(1): 149-168. [4] Bock R. Structure, function, and inheritance of plastid genomes. In: Bock R, ed. Cell and Molecular Biology of Plastids. Berlin Heidelberg: Springer-Verlag, 2007, 29-63. [5] Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles . Science , 1988, 240(4858): 1534-1538. [6] Svab Z, Hajdukiewicz P, Maliga P. Stable transformation of plastids in higher plants . Proc Natl Acad Sci USA , 1990, 87(21): 8526-8530. [7] Day A. Reverse genetics in flowering plant plastids. In: Bock R, Knoop V, eds. Genomics of Chloroplasts and Mitochondria. Netherlands: Springer, 2012: 415-441. [8] Tiller N, Weingartner M, Thiele W, Maximova E, Schöttler MA, Bock R. The plastid-specific ribosomal proteins of Arabidopsis thaliana can be divided into non-essential proteins and genuine ribosomal proteins . Plant J , 2012, 69(2): 302-316. [9] Fleischmann TT, Scharff LB, Alkatib S, Hasdorf S, Schöttler MA, Bock R. Nonessential plastid-encoded ribosomal proteins in tobacco: a developmental role for plastid translation and implications for reductive genome evolution . Plant Cell , 2011, 23(9): 3137-3155. [10] Rogalski M, Schöttler MA, Thiele W, Schulze WX, Bock R. Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions . Plant Cell , 2008, 20(8): 2221-2237. [11] Tiller N, Bock R. The translational apparatus of plastids and its role in plant development . Mol Plant , 2014, 7(7): 1105-1120. [12] Kanevski I, Maliga P, Rhoades DF, Gutteridge S. Plastome engineering of ribulose-1,5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid . Plant Physiol , 1999, 119(1): 133-142. [13] Petersen K, Schöttler MA, Karcher D, Thiele W, Bock R. Elimination of a group II intron from a plastid gene causes a mutant phenotype . Nucleic Acids Res , 2011, 39(12): 5181-5192. [14] Bock R, Kössel H, Maliga P. Introduction of a heterologous editing site into the tobacco plastid genome: the lack of RNA editing leads to a mutant phenotype . Embo J , 1994, 13(19): 4623-4628. [15] Bock R. Genetic engineering of the chloroplast: novel tools and new applications . Curr Opin Biotechnol , 2014, 26: 7-13. [16] Day A, Goldschmidt-Clermont M. The chloroplast transformation toolbox: selectable markers and marker removal . Plant Biotechnol J , 2011, 9(5): 540-553. [17] Maliga P. Plastid transformation in higher plants . Annu Rev Plant Biol , 2004, 55: 289-313. [18] Bock R. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology . Annu Rev Plant Biol , 2015, 66(1): 211-241. [19] 王金辉, 李轶女, 倪丕冲, 王国增, 张志芳, 沈桂芳. 叶绿体转化体系研究进展 . 生物技术通报, 2012, (1): 1-6. [20] Clarke JL, Waheed MT, Lössl AG, Martinussen I, Daniell H. How can plant genetic engineering contribute to cost-effective fish vaccine development for promoting sustainable aquaculture? Plant Mol Biol , 2013, 83(1-2): 33-40. [21] Hassan SW, Waheed MT, Müller M, Clarke JL, Shinwari ZK, Lössl AG. Expression of HPV-16 L1 capsomeres with glutathione-S-transferase as a fusion protein in tobacco plastids: an approach for a capsomere-based HPV vaccine . Hum Vaccin Immunother , 2014, 10(10): 2975-2982. [22] Gorantala J, Grover S, Rahi A, Chaudhary P, Rajwanshi R, Sarin NB, Bhatnagar R. Generation of protective immune response against anthrax by oral immunization with protective antigen plant-based vaccine . J Biotechnol , 2014, 176: 1-10. [23] Gorantala J, Grover S, Goel D, Rahi A, Magani SKJ, Chandra S, Bhatnagar R. A plant based protective antigen [PA(dIV)] vaccine expressed in chloroplasts demonstrates protective immunity in mice against anthrax . Vaccine , 2011, 29(27): 4521-4533. [24] Abdoli-Nasab M, Jalali-Javaran M, Cusidó RM, Palazón J, Baghizadeh A, Alizadeh H. Expression of the truncated tissue plasminogen activator ( K2S ) gene in tobacco chloroplast . Mol Biol Rep , 2013, 40(10): 5749-5758. [25] Yácono MDL, Farran I, Becher ML, Sander V, Sánchez VR, Martín V, Veramendi J, Clemente M. A chloroplast-derived Toxoplasma gondii GRA4 antigen used as an oral vaccine protects against toxoplasmosis in mice . Plant Biotechnol J , 2012, 10(9): 1136-1144. [26] Kolotilin I, Kaldis A, Devriendt B, Joensuu J, Cox E, Menassa R. Production of a subunit vaccine candidate against porcine post-weaning diarrhea in high-biomass transplastomic tobacco . PLoS One , 2012, 7(8): e42405. [27] Scotti N, Cardi T. Plastid transformation as an expression tool for plant-derived biopharmaceuticals . Methods Mol Biol , 2012, 847: 451-466. [28] Khan MS, Nurjis F. Synthesis and expression of recombinant interferon alpha-5 gene in tobacco chloroplasts, a non-edible plant . Mol Biol Rep , 2012, 39(4): 4391-4400. [29] Gisby MF, Mellors P, Madesis P, Ellin M, Laverty H, O'Kane S, Ferguson MW, Day A. A synthetic gene increases TGF β3 accumulation by 75-fold in tobacco chloroplasts enabling rapid purification and folding into a biologically active molecule . Plant Biotechnol J , 2011, 9(5): 618-628. [30] Dolgin E. Immunology: Oral solutions . Nature , 2014, 515(7528): S166-S167. [31] Shil PK, Kwon KC, Zhu P, Verma A, Daniell H, Li QH. Oral delivery of ACE2/Ang-(1-7) bioencapsulated in plant cells protects against experimental uveitis and autoimmune uveoretinitis . Mol Ther , 2014, 22(12): 2069-2082. [32] Shenoy V, Kwon KC, Rathinasabapathy A, Lin SN, Jin GY, Song CJ, Shil P, Nair A, Qi YF, Li QH, Francis J, Katovich MJ, Daniell H, Raizada MK. Oral delivery of Angiotensin-converting enzyme 2 and Angiotensin-(1-7) bioencapsulated in plant cells attenuates pulmonary hypertension . Hypertension , 2014, 64(6): 1248-1259. [33] Wang XM, Su J, Sherman A, Rogers GL, Liao GX, Hoffman BE, Leong KW, Terhorst C, Daniell H, Herzog RW. Plant-based oral tolerance to hemophilia therapy employs a complex immune regulatory response including LAP + CD4 + T cells . Blood , 2015, 125(15): 2418-2427. [34] Sherman A, Su J, Lin SN, Wang XM, Herzog RW, Daniell H. Suppression of inhibitor formation against FVIII in a murine model of hemophilia A by oral delivery of antigens bioencapsulated in plant cells . Blood , 2014, 124(10): 1659-1668. [35] 巩智刚, 徐芳, 周海鹏, 王雯雯, 王玉华. 叶绿体转化及其用于疫苗表达研究的最新进展 . 基因组学与应用生物学, 2012, 31(3): 310-319. [36] 巩智刚, 周海鹏, 徐芳, 韩晓玲, 王玉华. 叶绿体转化及其应用于作物改良研究的最新进展 . 核农学报, 2012, 26(2): 288-294. [37] Svab Z, Harper EC, Jones JDG, Maliga P. Aminoglycoside-3''-adenyltransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacum. Plant Mol Biol , 1990, 14(2): 197-205. [38] Svab Z, Maliga P. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene . Proc Natl Acad Sci USA , 1993, 90(3): 913-917. [39] Carrer H, Hockenberry TN, Svab Z, Maliga P. Kanamycin resistance as a selectable marker for plastid transformation in tobacco . Mol Gen Genet , 1993, 241(1-2): 49-56. [40] Huang FC, Klaus SM, Herz S, Zou Z, Koop HU, Golds TJ. Efficient plastid transformation in tobacco using the aphA -6 gene and kanamycin selection . Mol Genet Genomics , 2002, 268(1): 19-27. [41] Li WM, Ruf S, Bock R. Chloramphenicol acetyltransferase as selectable marker for plastid transformation . Plant Mol Biol , 2011, 76(3-5): 443-451. [42] Barone P, Zhang XH, Widholm JM. Tobacco plastid transformation using the feedback-insensitive anthranilate synthase [α]-subunit of tobacco (ASA2) as a new selectable marker . J Exp Bot , 2009, 60(11): 3195-3202. [43] Gisby MF, Mudd EA, Day A. Growth of transplastomic cells expressing D-amino acid oxidase in chloroplasts is tolerant to D-alanine and inhibited by D-valine . Plant Physiol , 2012, 160(4): 2219-2226. [44] Iamtham S, Day A. Removal of antibiotic resistance genes from transgenic tobacco plastids . Nat Biotechnol , 2000, 18(11): 1172-1176. [45] Klaus SMJ, Huang FC, Golds TJ, Koop HU. Generation of marker-free plastid transformants using a transiently cointegrated selection gene . Nat Biotechnol , 2004, 22(2): 225-229. [46] Kittiwongwattana C, Lutz K, Clark M, Maliga P. Plastid marker gene excision by the phiC31 phage site-specific recombinase . Plant Mol Biol , 2007, 64(1-2): 137-143. [47] Khan MS, Khalid AM, Malik KA. Phage phiC31 integrase: a new tool in plastid genome engineering . Trends Plant Sci , 2005, 10(1): 1-3. [48] Shao M, Kumar S, Thomson JG. Precise excision of plastid DNA by the large serine recombinase Bxb1 . Plant Biotechnol J , 2014, 12(3): 322-329. [49] Bock R. Transgenic plastids in basic research and plant biotechnology . J Mol Biol , 2001, 312(3): 425-438. [50] Bock R, Khan MS. Taming plastids for a green future . Trends Biotechnol , 2004, 22(6): 311-318. [51] Nugent GD, Ten Have M, van der Gulik A, Dix PJ, Uijtewaal BA, Mordhorst AP. Plastid transformants of tomato selected using mutations affecting ribosome structure . Plant Cell Rep , 2005, 24(6): 341-349. [52] Lelivelt CLC, McCabe MS, Newell CA, deSnoo CB, van Dun KM, Birch-Machin I, Gray JC, Mills KHG, Nugent JM. Stable plastid transformation in lettuce ( Lactuca sativa L.) . Plant Mol Biol , 2005, 58(6): 763-774. [53] Díaz AH, Koop HU. Nicotiana tabacum : PEG-Mediated Plastid Transformation. In: Maliga P, ed. Chloroplast Biotechnology: Methods and Protocols. Humana Press, 2014: 165-175. [54] Elghabi Z, Ruf S, Bock R. Biolistic co-transformation of the nuclear and plastid genomes . Plant J , 2011, 67(5): 941-948. [55] Lu YH, Rijzaani H, Karcher D, Ruf S, Bock R. Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons . Proc Natl Acad Sci USA , 2013, 110(8): E623-632. [56] Stegemann S, Bock R. Exchange of genetic material between cells in plant tissue grafts . Science , 2009, 324(5927): 649-651. [57] Stegemann S, Keuthe M, Greiner S, Bock R. Horizontal transfer of chloroplast genomes between plant species . Proc Natl Acad Sci USA , 2012, 109(7): 2434-2438. [58] Fuentes I, Stegemann S, Golczyk H, Karcher D, Bock R. Horizontal genome transfer as an asexual path to the formation of new species . Nature , 2014, 511(7508): 232-235. [59] Inka Borchers AM, Gonzalez-Rabade N, Gray JC. Increased accumulation and stability of rotavirus VP6 protein in tobacco chloroplasts following changes to the 5' untranslated region and the 5' end of the coding region . Plant Biotechnol J , 2012, 10(4): 422-434. [60] Monde RA, Greene JC, Stern DB. The sequence and secondary structure of the 3'-UTR affect 3'-end maturation, RNA accumulation, and translation in tobacco chloroplasts . Plant Mol Biol , 2000, 44(4): 529-542. [61] Kuroda H, Maliga P. Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs . Nucleic Acids Res , 2001, 29(4): 970-975. [62] Kuroda H, Maliga P. Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts . Plant Physiol , 2001, 125(1): 430-436. [63] Yang HJ, Gray BN, Ahner BA, Hanson MR. Bacteriophage 5' untranslated regions for control of plastid transgene expression . Planta , 2013, 237(2): 517-527. [64] Gray BN, Yang HJ, Ahner BA, Hanson MR. An efficient downstream box fusion allows high-level accumulation of active bacterial beta-glucosidase in tobacco chloroplasts . Plant Mol Biol , 2011, 76(3-5): 345-355. [65] Rogalski M, Ruf S, Bock R. Tobacco plastid ribosomal protein S18 is essential for cell survival . Nucleic Acids Res , 2006, 34(16): 4537-4545. [66] Zhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg K, Borchers A-MI, Maloney AP, Kavanagh TA, Gray JC, Bock R. High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes . Plant Biotechnol J , 2008, 6(9): 897-913. [67] Zhang J, Ruf S, Hasse C, Childs L, Scharff LB, Bock R. Identification of cis-elements conferring high levels of gene expression in non-green plastids . Plant J , 2012, 72(1): 115-128. [68] Oey M, Lohse M, Scharff LB, Kreikemeyer B, Bock R. Plastid production of protein antibiotics against pneumonia via a new strategy for high-level expression of antimicrobial proteins . Proc Natl Acad Sci USA , 2009, 106(16): 6579-6584. [69] Gottschamel J, Waheed MT, Clarke JL, Lössl AG. A novel chloroplast transformation vector compatible with the Gateway ® recombination cloning technology. Transgenic Res , 2013, 22(6): 1273-1278. [70] Oey M, Lohse M, Kreikemeyer B, Bock R. Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic . Plant J , 2009, 57(3): 436-445. [71] Varshavsky A. The N-end rule pathway of protein degradation . Genes Cells , 1997, 2(1): 13-28. [72] Apel W, Schulze WX, Bock R. Identification of protein stability determinants in chloroplasts . Plant J , 2010, 63(4): 636-650. [73] Elghabi Z, Karcher D, Zhou F, Ruf S, Bock R. Optimization of the expression of the HIV fusion inhibitor cyanovirin-N from the tobacco plastid genome . Plant Biotechnol J , 2011, 9(5): 599-608. [74] Magee AM, Coyne S, Murphy D, Horvath EM, Medgyesy P, Kavanagh TA. T7 RNA polymerase-directed expression of an antibody fragment transgene in plastids causes a semi-lethal pale-green seedling phenotype . Transgenic Res , 2004, 13(4): 325-337. [75] Lössl A, Bohmert K, Harloff H, Eibl C, Mühlbauer S, Koop HU. Inducible trans-activation of plastid transgenes: expression of the R. eutrophaphb operon in transplastomic tobacco . Plant Cell Physiol , 2005, 46(9): 1462-1471. [76] Mühlbauer SK, Koop HU. External control of transgene expression in tobacco plastids using the bacterial lac repressor . Plant J , 2005, 43(6): 941-946. [77] Verhounig A, Karcher D, Bock R. Inducible gene expression from the plastid genome by a synthetic riboswitch . Proc Natl Acad Sci USA , 2010, 107(14): 6204-6209. [78] Caroca R, Howell KA, Hasse C, Ruf S, Bock R. Design of chimeric expression elements that confer high-level gene activity in chromoplasts . Plant J , 2013, 73(3): 368-379. [79] Kahlau S, Bock R. Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein . Plant Cell , 2008, 20(4): 856-874. [80] Valkov VT, Scotti N, Kahlau S, Maclean D, Grillo S, Gray JC, Bock R, Cardi T. Genome-wide analysis of plastid gene expression in potato leaf chloroplasts and tuber amyloplasts: transcriptional and posttranscriptional control . Plant Physiol , 2009, 150(4): 2030-2044. [81] Scharff LB, Bock R. Synthetic biology in plastids . Plant J , 2014, 78(5): 783-798. [82] Zhou F, Karcher D, Bock R. Identification of a plastid intercistronic expression element (IEE) facilitating the expression of stable translatable monocistronic mRNAs from operons . Plant J , 2007, 52(5): 961-972. [83] Lin MT, Occhialini A, Andralojc PJ, Parry MAJ, Hanson MR. A faster Rubisco with potential to increase photosynthesis in crops . Nature , 2014, 513(7519): 547- 550. [84] Chen H, Lin YJ, Zhang QF. Review and prospect of transgenic rice research . Chin Sci Bull , 2009, 54(22): 4049-4068. [85] Whitney SM, Sharwood RE. Construction of a tobacco master line to improve Rubisco engineering in chloroplasts . J Exp Bot , 2008, 59(7): 1909-1921. [86] Pengelly JJL, Förster B, von Caemmerer S, Badger MR, Price GD, Whitney SM. Transplastomic integration of a cyanobacterial bicarbonate transporter into tobacco chloroplasts . J Exp Bot , 2014, 65(12): 3071-3080. [87] Lin MT, Occhialini A, Andralojc PJ, Devonshire J, Hines KM, Parry MA, Hanson MR. β-Carboxysomal proteins assemble into highly organized structures in Nicotiana chloroplasts . Plant J , 2014, 79(1): 1-12. [88] Uematsu K, Suzuki N, Iwamae T, Inui M, Yukawa H. Increased fructose 1, 6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants . J Exp Bot , 2012, 63(8): 3001-3009. [89] Whitney SM, Birch R, Kelso C, Beck JL, Kapralov MV. Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone . Proc Natl Acad Sci USA , 2015, 112(11): 3564-3569. [90] Wong EY, Hironaka CM, Fischhoff DA. Arabidopsis thaliana small subunit leader and transit peptide enhance the expression of Bacillus thuringiensis proteins in transgenic plants . Plant Mol Biol , 1992, 20(1): 81-93. [91] Kim EH, Suh SC, Park BS, Shin KS, Kweon SJ, Han EJ, Park SH, Kim YS, Kim JK. Chloroplast-targeted expression of synthetic cry1Ac in transgenic rice as an alternative strategy for increased pest protection . Planta , 2009, 230(2): 397-405. [92] Ye RJ, Huang HQ, Yang Z, Chen TY, Liu L, Li XH, Chen H, Lin YJ. Development of insect-resistant transgenic rice with Cry1C*-free endosperm . Pest Manag Sci , 2009, 65(9): 1015-1020. [93] Wu JH, Tian YH. Development of insect-resistant transgenic cotton with chimeric TVip3A accumulating in chloroplasts . Methods Mol Biol , 2013, 958: 247-258. [94] Wu JH, Luo XL, Zhang XR, Shi YJ, Tian YC. Development of insect-resistant transgenic cotton with chimeric TVip3A* accumulating in chloroplasts . Transgenic Res , 2011, 20(5): 963-973. [95] Tu JM, Zhang GA, Datta K, Xu CG, He YQ, Zhang QF, Khush GS, Datta SK. Field performance of transgenic elite commercial hybrid rice expressing bacillus thuringiensis delta-endotoxin . Nat Biotechnol , 2000, 18(10): 1101-1104. [96] Chen H, Zhang GA, Zhang QF, Lin YJ. Effect of transgenic Bacillus thuringiensis rice lines on mortality and feeding behavior of rice stem borers (Lepidoptera: Crambidae) . J Econ Entomol , 2008, 101(1): 182-189. [97] 唐微, 林拥军. 转 cry1Ab 基因抗虫水稻的田间试验 . 遗传, 2007, 29(8): 1008-1012. [98] McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco . Biotechnology (N Y) , 1995, 13(4): 362-365. [99] Kota M, Daniell H, Varma S, Garczynski SF, Gould F, Moar WJ. Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects . Proc Natl Acad Sci USA , 1999, 96(5): 1840-1845. [100] Reddy VS, Leelavathi S, Selvapandiyan A, Raman R, Giovanni F, Shukla V, Bhatnagar RK. Analysis of chloroplast transformed tobacco plants with cry 1Ia5 under rice psb A transcriptional elements reveal high level expression of Bt toxin without imposing yield penalty and stable inheritance of transplastome . Mol Breed , 2002, 9(4): 259-269. [101] Chakrabarti SK, Lutz KA, Lertwiriyawong B, Svab Z, Maliga P. Expression of the cry 9Aa 2 B.t . gene in tobacco chloroplasts confers resistance to potato tuber moth . Transgenic Res , 2006, 15(4): 481-488. [102] De Cosa B, Moar W, Lee SB, Miller M, Daniell H. Overexpression of the Bt cry 2Aa2 operon in chloroplasts leads to formation of insecticidal crystals . Nat Biotechnol , 2001, 19(1): 71-74. [103] Hou BK, Zhou YH, Wan LH, Zhang ZL, Shen GF, Chen ZH, Hu ZM. Chloroplast transformation in oilseed rape . Transgenic Res , 2003, 12(1): 111-114. [104] Dufourmantel N, Tissot G, Goutorbe F, Garçon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin . Plant Mol Biol , 2005, 58(5): 659-668. [105] Liu CW, Lin C-C, Yiu J-C, Chen JJW, Tseng M-J. Expression of a Bacillus thuringiensis toxin ( cry1Ab ) gene in cabbage ( Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella. Theor Appl Genet , 2008, 117(1): 75-88. [106] Jin SX, Singh ND, Li LB, Zhang XL, Daniell H. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase , V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation . Plant Biotechnol J , 2015, 13(3): 435-446. [107] Kumar P, Pandit SS, Baldwin IT. Tobacco rattle virus vector: A rapid and transient means of silencing manduca sexta genes by plant mediated RNA interference . PLoS One , 2012, 7(2): e31347. [108] Bolognesi R, Ramaseshadri P, Anderson J, Bachman P, Clinton W, Flannagan R, Ilagan O, Lawrence C, Levine S, Moar W, Mueller G, Tan JG, Uffman J, Wiggins E, Heck G, Segers G. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm ( Diabrotica virgifera virgifera LeConte) . PLoS One , 2012, 7(10): e47534. [109] Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids . Science , 2015, 347(6225): 991-994. [110] Ruhlman TA, Rajasekaran K, Cary JW. Expression of chloroperoxidase from Pseudomonas pyrrocinia in tobacco plastids for fungal resistance . Plant Sci , 2014, 228: 98-106. [111] DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H. Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi . Plant Physiol , 2001, 127(3): 852-862. [112] Lee SB, Li BC, Jin SX, Daniell H. Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections . Plant Biotechnol J , 2011, 9(1): 100-115. [113] Jin SX, Zhang XL, Daniell H. Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, Lepidopteran insects, bacterial and viral pathogens . Plant Biotechnol J , 2012, 10(3): 313-327. [114] Ye GN, Hajdukiewicz PTJ, Broyles D, Rodriguez D, Xu CW, Nehra N, Staub JM. Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco . Plant J , 2001, 25(3): 261-270. [115] Lutz KA, Knapp JE, Maliga P. Expression of bar in the plastid genome confers herbicide resistance . Plant Physiol , 2001, 125(4): 1585-1590. [116] Dufourmantel N, Dubald M, Matringe M, Canard H, Garcon F, Job C, Kay E, Wisniewski J-P, Ferullo J-M, Pelissier B, Sailland A, Tissot G. Generation and characterization of soybean and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance . Plant Biotechnol J , 2007, 5(1): 118-133. [117] Shimizu M, Goto M, Hanai M, Shimizu T, Izawa N, Kanamoto H, Tomizawa KI, Yokota A, Kobayashi H. Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco . Plant Physiol , 2008, 147(4): 1976-1983. [118] Zhang J, Tan W, Yang XH, Zhang HX. Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco . Plant Cell Rep , 2008, 27(6): 1113-1124. [119] Craig W, Lenzi P, Scotti N, De Palma M, Saggese P, Carbone V, McGrath Curran N, Magee AM, Medgyesy P, Kavanagh TA, Dix PJ, Grillo S, Cardi T. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance . Transgenic Res , 2008, 17(5): 769-782. [120] Jin SX, Daniell H. Expression of γ-tocopherol methyltransferase in chloroplasts results in massive proliferation of the inner envelope membrane and decreases susceptibility to salt and metal-induced oxidative stresses by reducing reactive oxygen species . Plant Biotechnol J , 2014, 12(9): 1274-1285. [121] Poage M, Le Martret B, Jansen MAK, Nugent GD, Dix PJ. Modification of reactive oxygen species scavenging capacity of chloroplasts through plastid transformation . Plant Mol Biol , 2011, 76(3-5): 371-384. [122] Chen PJ, Senthilkumar R, Jane WN, He Y, Tian ZH, Yeh KW. Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses . Plant Biotechnol J , 2014, 12(4): 503-515. [123] Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis . Annu Rev Plant Biol , 2013, 64: 665-700. [124] Hasunuma T, Takeno S, Hayashi S, Sendai M, Bamba T, Yoshimura S, Tomizawa KI, Fukusaki E, Miyake C. Overexpression of 1-Deoxy-D-xylulose-5-phosphate reductoisomerase gene in chloroplast contributes to increment of isoprenoid production . J Biosci Bioeng , 2008, 105(5): 518-526. [125] Apel W, Bock R. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion . Plant Physiol , 2009, 151(1): 59-66. [126] Wurbs D, Ruf S, Bock R. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome . Plant J , 2007, 49(2): 276-288. [127] Hasunuma T, Miyazawa SI, Yoshimura S, Shinzaki Y, Tomizawa KI, Shindo K, Choi SK, Misawa N, Miyake C. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering . Plant J , 2008, 55(5): 857-868. [128] Harada H, Maoka T, Osawa A, Hattan JI, Kanamoto H, Shindo K, Otomatsu T, Misawa N. Construction of transplastomic lettuce ( Lactuca sativa ) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids . Transgenic Res , 2014, 23(2): 303-315. [129] Dunne A, Maple-Grødem J, Gargano D, Haslam RP, Napier JA, Chua NH, Russell R, Møller SG. Modifying fatty acid profiles through a new cytokinin-based plastid transformation system . Plant J , 2014, 80(6): 1131-1138. [130] Arai Y, Shikanai T, Doi Y, Yoshida S, Yamaguchi I, Nakashita H. Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid . Plant Cell Physiol , 2004, 45(9): 1176-1184. [131] Bohmert-Tatarev K, McAvoy S, Daughtry S, Peoples OP, Snell KD. High levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate . Plant Physiol , 2011, 155(4): 1690-1708. [132] Hennig A, Bonfig K, Roitsch T, Warzecha H. Expression of the recombinant bacterial outer surface protein A in tobacco chloroplasts leads to thylakoid localization and loss of photosynthesis . FEBS J , 2007, 274(21): 5749-5758. [133] Tregoning JS, Nixon P, Kuroda H, Svab Z, Clare S, Bowe F, Fairweather N, Ytterberg J, van Wijk KJ, Dougan G, Maliga P. Expression of tetanus toxin Fragment C in tobacco chloroplasts . Nucleic Acids Res , 2003, 31(4): 1174-1179. [134] Bock R. Engineering chloroplasts for high-level foreign protein expression . Methods Mol Biol , 2014, 1132: 93-106. [135] Clarke JL, Daniell H. Plastid biotechnology for crop production: present status and future perspectives . Plant Mol Biol , 2011, 76(3-5): 211-220. [136] Zhang XH, Webb J, Huang YH, Lin L, Tang RS, Liu AM. Hybrid Rubisco of tomato large subunits and tobacco small subunits is functional in tobacco plants . Plant Sci , 2011, 180(3): 480-488. [137] Petersen K, Bock R. High-level expression of a suite of thermostable cell wall-degrading enzymes from the chloroplast genome . Plant Mol Biol , 2011, 76(3-5): 311-321. [138] Verma D, Jin SX, Kanagaraj A, Singh ND, Daniel J, Kolattukudy PE, Miller M, Daniell H. Expression of fungal cutinase and swollenin in tobacco chloroplasts reveals novel enzyme functions and/or substrates . PLoS One , 2013, 8(2): e57187. [139] Agrawal P, Verma D, Daniell H. Expression of Trichoderma reesei β-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis . PLoS One , 2011, 6(12): e29302. [140] Ruiz ON, Hussein HS, Terry N, Daniell H. Phytoremediation of organomercurial compounds via chloroplast genetic engineering . Plant Physiol , 2003, 132(3): 1344- 1352. [141] Ruiz ON, Alvarez D, Torres C, Roman L, Daniell H. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability . Plant Biotechnol J , 2011, 9(5): 609-617. [142] Khan MS, Maliga P. Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants . Nat Biotechnol , 1999, 17(9): 910-915. [143] Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee S-B, Cheong J-J, Daniell H, Kim M. Plastid transformation in the monocotyledonous cereal crop, rice ( Oryza sativa ) and transmission of transgenes to their progeny . Mol Cells , 2006, 21(3): 401-410. [144] 李轶女, 孙丙耀, 苏宁, 孟祥勋, 张志芳, 沈桂芳. 水稻叶绿体表达体系的建立及抗PPT叶绿体转化植株的获得 . 中国农业科学, 2007, 40(9): 1849-1855. [145] 李丁. 以潮霉素为筛选标记的水稻叶绿体转化体系的建立[学位论文]. 长沙: 中南大学, 2013. (责任编委: 邢永忠) |
[1] | 林春,刘正杰,董玉梅,MichelVales,毛自朝. 藜麦的驯化栽培与遗传育种[J]. 遗传, 2019, 41(11): 1009-1022. |
[2] | 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望[J]. 遗传, 2018, 40(10): 841-857. |
[3] | 何勇,罗岸,母连胜,陈强,张艳,叶开温,田志宏. 质体基因工程中选择标记基因研究进展[J]. 遗传, 2017, 39(9): 810-827. |
[4] | 马三垣,夏庆友. 家蚕遗传育种:从传统杂交到分子设计[J]. 遗传, 2017, 39(11): 1025-1032. |
[5] | 邱丽娟,韩天富,常汝镇. 大豆遗传育种学家王金陵[J]. 遗传, 2010, 32(10): 979-980. |
[6] | 任骞,李润植. 提高转基因在质体中特异有效表达的新策略[J]. 遗传, 2008, 30(2): 142-148. |
[7] | 刘传光,张桂权. 水稻单核苷酸多态性及其应用现状[J]. 遗传, 2006, 28(6): 737-744. |
[8] | 刘用生,李保印,李桂荣,周秀梅. 嫁接杂交与果树遗传的特殊性[J]. 遗传, 2004, 26(5): 705-710. |
[9] | 高蓝,李浩明. DNA分子标记在番茄遗传育种研究中的应用[J]. 遗传, 2003, 25(3): 361-366. |
[10] | 王凤宝,付金锋,董立峰,朱英波. 豌豆半无叶突变体性状的遗传及在育种上的利用[J]. 遗传, 2003, 25(2): 185-188. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: