[1] 袁茵. 经典研究案例分析在大学遗传学教学中的应用. 嘉应学院学报(自然科学), 2013, 31(11): 71-74. [2] 余诞年. 番茄果重QTL-fw2.2研究进展及其遗传学和育种学意义. 见: 全国蔬菜遗传育种学术讨论会论文集. 北京: 中国园艺学会, 2002. [3] 胡小荣, 陶梅, 周红立. 番茄种质资源遗传多样性研究进展. 现代农业科技, 2008, (5): 6-8. [4] Lindstrom EW. Inheritance in tomatoes. Genetics , 1925, 10(4): 305-317. [5] Jenkins JA, Mackinney G. Inheritance of carotenoid differences in the tomato hybrid yellow x tangerine. Genetics , 1953, 38(2): 107-116. [6] Kachanovsky DE, Filler S, Isaacson T, Hirschberg J. Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis -carotenoids. Proc Natl Acad Sci USA , 2012, 109(46): 19021-19026. [7] Ballester AR, Molthoff J, de Vos R, Hekkert BTL, Orzaez D, Fernández-Moreno JP, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol , 2010, 152(1): 71-84. [8] Macarthur JW. Linkage studies with the tomato. Genetics , 1926, 11(4): 387-405. [9] Macarthur JW. Linkage studies with the tomato. Ⅱ. Three linkage groups. Genetics , 1928, 13(5): 410-420. [10] MacArthur JW. Linkage studies with the tomato. Ⅲ. Fifteen factors in six groups. Roy Can Inst Trans , 1931, 18: 1-19. [11] Rick CM. The tomato. In: King R C, ed. Handbook of Genetics. New York: Plenum Press, 1974: 247-280. [12] Rick CM, Zobel RW, Fobes JF. Four peroxidase loci in red-fruited tomato species: genetics and geographic distribution. Proc Natl Acad Sci USA , 1974, 71(3): 835-839. [13] Tanksley SD, Rick CM. Isozymic gene linkage map of the tomato: Applications in genetics and breeding. Theor Appl Genet , 1980, 58(2): 161-170. [14] Mutschler MA, Tanksly SD, Rick CM. Likage maps of the tomato ( Lycopersicon esculentum ). TGC Rep , 1987, 37: 5-34. [15] Bernatzky R, Tanksley SD. Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics , 1986, 112(4): 887-898. [16] Miller JC, Tanksley SD. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon . Theor Appl Genet , 1990, 80(4): 437-448. [17] Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND. High density molecular linkage maps of the tomato and potato genomes. Genetics , 1992, 132(4): 1141-1160. [18] Frary A, Nesbitt TC, Grandillo S, van der Knaap E, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD. fw2. 2 : A quantitative trait locus key to the evolution of tomato fruit size. Science , 2000, 289(5476): 85-88. [19] Tanksley SD, Medina-Filho H, Rick CM. Use of naturally occurring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato. Heredity , 1982, 49(1): 11-25. [20] Weller JI, Soller M, Brody T. Linkage analysis of quantitative traits in an interspecific cross of tomato ( Lycopersiconesculentum × Lycopersiconpimpinellifolium ) by means of genetic markers. Genetics , 1988, 118(2): 329-339. [21] Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD. Resolution of quantitative traits into Mendelian factors using a complete linkage map of restriction fragment length polymorphisms. Nature , 1988, 335(6192): 721-726. [22] Grandillo S, Ku HM, Tanksley SD. Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet , 1999, 99(6): 978-987. [23] Alpert KB, Grandillo S, Tanksley SD. fw2.2 : a major QTL controlling fruit weight is common to both red- and green-fruited tomato species. Theor Appl Genet , 1995, 91(6-7): 994-1000. [24] Alpert KB, Tanksley SD. High-resolution mapping and isolation of a yeast artificial |