遗传 ›› 2023, Vol. 45 ›› Issue (10): 933-944.doi: 10.16288/j.yczz.23-101
• 技术与方法 • 上一篇
李鑫1(), 范虹1(), 赵兴春2, 范晓诺3, 姚若侠1()
收稿日期:
2023-06-15
修回日期:
2023-08-14
出版日期:
2023-10-20
发布日期:
2023-08-30
通讯作者:
范虹,姚若侠
E-mail:15514872144@163.com;rxyao@snnu.edu.cn;fanhong@snnu.edu.cn
作者简介:
李鑫,硕士研究生,专业方向:生物信息。E-mail: 基金资助:
Xin Li1(), Hong Fan1(), Xingchun Zhao2, Xiaonuo Fan3, Ruoxia Yao1()
Received:
2023-06-15
Revised:
2023-08-14
Published:
2023-10-20
Online:
2023-08-30
Contact:
Hong Fan,Ruoxia Yao
E-mail:15514872144@163.com;rxyao@snnu.edu.cn;fanhong@snnu.edu.cn
Supported by:
摘要:
在法医DNA分析领域,混合短串联重复序列(short tandem repeats,STR)图谱的分析一直是研究难点。当前,国内主要依靠法医进行人工分析,不仅效率低下,分析结果还存在着主观性偏好,难以满足日益增长的STR图谱分析的需求。本文提出一种新的混合STR图谱分析方法——全局最小残差法,不仅可以计算出分析结果,还可以预测出每个组分的混合比例。该方法首先给混合比例赋予了新的定义,然后对等位基因模型进行优化,进而综合考虑STR图谱中的所有基因座,将每个基因座的残差值进行累加求和,选择累加和最小的混合比例作为推断结果,并使用灰狼优化算法快速寻找混合比例的最优值。对于二组分STR图谱,全局最小残差法能够兼顾分析的准确性和分析速度,有利于实现大量的图谱分析。本文提出的算法在实际应用中取得了不错的效果,具有较高的应用价值,可为混合STR图谱分析领域的研究提供新的解决方案。
李鑫, 范虹, 赵兴春, 范晓诺, 姚若侠. 基于全局最小残差法快速分析混合STR图谱[J]. 遗传, 2023, 45(10): 933-944.
Xin Li, Hong Fan, Xingchun Zhao, Xiaonuo Fan, Ruoxia Yao. Rapid analyzing mixed STR profiles based on the global minimum residual method[J]. Hereditas(Beijing), 2023, 45(10): 933-944.
表3
等位基因模型(优化版)"
基因座类型 | 基因型组合 (个体1, 个体2) | 等位基因 | Mx取值范围 | |||
---|---|---|---|---|---|---|
a | b | c | d | |||
四带型 | (cd, ab) | (1-Mx)/2 | (1-Mx)/2 | Mx/2 | Mx/2 | (0, 50%] |
三带型 | (bc, aa) | 1-Mx | Mx/2 | Mx/2 | (0, 50%] | |
(aa, bc) | Mx | (1-Mx)/2 | (1-Mx)/2 | (33.3%, 50%] | ||
(ac, ab) | 0.5 | (1-Mx)/2 | Mx/2 | (0, 50%] | ||
(ab, ac) | 0.5 | Mx/2 | (1-Mx)/2 | 50% | ||
(cc, ab) | (1-Mx)/2 | (1-Mx)/2 | Mx | (0, 33.3%] | ||
(bb, ac) | (1-Mx)/2 | Mx | (1-Mx)/2 | 33.3% | ||
二带型 | (ab, aa) | 1-Mx/2 | Mx/2 | (0, 50%] | ||
(aa, ab) | (1+Mx)/2 | (1-Mx)/2 | (0, 50%] | |||
(ab, ab) | 0.5 | 0.5 | (0, 50%] | |||
(bb, aa) | 1-Mx | Mx | (0, 50%] |
表4
Data 1的归一化结果"
基因座 | 等位基因 | 归一化结果 | 基因座 | 等位基因 | 归一化结果 |
---|---|---|---|---|---|
vWA | 15 | 0.335198 | FGA | 21 | 0.529154 |
19 | 0.305188 | 22 | 0.320254 | ||
18 | 0.201679 | 23 | 0.150592 | ||
16 | 0.157935 | D16S539 | 32.2 | 0.365978 | |
D8S1179 | 12 | 0.399721 | 28 | 0.342649 | |
16 | 0.275419 | 30 | 0.291373 | ||
13 | 0.168436 | D7S820 | 10 | 0.543115 | |
14 | 0.156425 | 8 | 0.326411 | ||
D18S51 | 17 | 0.385067 | 11 | 0.130474 | |
18 | 0.335507 | TH01 | 5 | 0.375796 | |
12 | 0.15357 | 6 | 0.372213 | ||
13 | 0.125856 | 8 | 0.25199 | ||
D16S539 | 11 | 0.355794 | TPOX | 8 | 0.467634 |
13 | 0.354102 | 10 | 0.366071 | ||
12 | 0.145193 | 11 | 0.166295 | ||
14 | 0.144911 | CSF1PO | 11 | 0.388085 | |
D3S1358 | 15 | 0.464937 | 12 | 0.343541 | |
18 | 0.362319 | 10 | 0.268374 | ||
16 | 0.172744 | D5S818 | 12 | 0.846892 | |
13 | 0.153108 | ||||
D13S317 | 11 | 0.658337 | |||
12 | 0.341663 |
表8
STR图谱在Mx=0.20时的最小残差值及分析结果"
基因座locus | 分析结果 (个体1, 个体2) | residuallocus |
---|---|---|
vWA | (16/18,19/15) | 0.026884 |
D8S1179 | (14/13,16/12) | 0.023388 |
D18S51 | (13/12,18/17) | 0.007921 |
D16S539 | (14/12,13/11) | 0.008120 |
D3S1358 | (16/16,15/18) | 0.006380 |
FGA | (21/23,21/22) | 0.009769 |
D16S539 | (30/30,32.2/28) | 0.012796 |
D7S820 | (10/11,10/8) | 0.008203 |
TH01 | (8/8,5/6) | 0.004061 |
TPOX | (8/11 8/10) | 0.006594 |
CSF1PO | (10/10,11/12) | 0.008005 |
D5S818 | (13/13,12/12) | 0.004398 |
D13S317 | (11/11,11/12) | 0.006806 |
residualsum* | 0.133323 |
表9
最小残差法、全局最小残差法和mixsep分析结果比较"
基因座 | 最小残差法 | 全局最小残差法 | mixsep | ||||
---|---|---|---|---|---|---|---|
个体1 | 个体2 | 个体1 | 个体2 | 个体1 | 个体2 | ||
vWA | 16/18 | 15/19 | 16/18 | 15/19 | 16/18 | 15/19 | |
D8S1179 | 13/14 | 12/16 | 13/14 | 12/16 | 13/14 | 12/16 | |
D18S51 | 12/13 | 17/18 | 12/13 | 17/18 | 12/13 | 17/18 | |
D16S539 | 12/14 | 11/13 | 12/14 | 11/13 | 12/14 | 11/13 | |
D3S1358 | 15/16 | 15/18 | 15/16 | 15/18 | 15/16 | 15/18 | |
FGA | 21/23 | 21/22 | 21/23 | 21/22 | 21/23 | 21/22 | |
D16S539 | 32.2/28 | 32.2/30 | 30/30 | 28/32.2 | 30/30 | 28/32.2 | |
30/30 | 28/32.2 | ||||||
D7S820 | 10/11 | 8/10 | 10/11 | 8/10 | 10/11 | 8/10 | |
TH01 | 8/8 | 5/6 | 8/8 | 5/6 | 8/8 | 5/6 | |
TPOX | 8/11 | 8/10 | 8/11 | 8/10 | 8/11 | 8/10 | |
CSF1PO | 10/10 | 11/12 | 10/10 | 11/12 | 10/10 | 11/12 | |
D5S818 | 12/13 | 12/12 | 12/13 | 12/12 | 12/13 | 12/12 | |
D13S317 | 11/11 | 11/12 | 11/11 | 11/12 | 11/11 | 11/12 | |
12/12 | 11/11 |
[1] |
Cowell RG, Lauritzen SL, Mortera J. Identification and separation of DNA mixtures using peak area information. Forensic Sci Int, 2007, 166(1): 28-34.
pmid: 16650704 |
[2] |
Gill P, Sparkes R, Kimpton C. Development of guidelines to designate alleles using an STR multiplex system. Forensic Sci Int, 1997, 89(3): 185-197.
pmid: 9363627 |
[3] |
Bleka Ø, Benschop CCG, Storvik G, Gill P. A comparative study of qualitative and quantitative models used to interpret complex STR DNA profiles. Forensic Sci Int Genet, 2016, 25: 85-96.
doi: 10.1016/j.fsigen.2016.07.016 |
[4] |
Budowle B, Onorato AJ, Callaghan TF, Manna AD, Gross AM, Guerrieri RA, Luttman JC, McClure DL. Mixture interpretation: defining the relevant features for guidelines for the assessment of mixed DNA profiles in forensic casework. J Forensic Sci, 2009, 54(4): 810-821.
doi: 10.1111/j.1556-4029.2009.01046.x pmid: 19368620 |
[5] |
Taylor D, Bright JA, Buckleton J. The interpretation of single source and mixed DNA profiles. Forensic Sci Int Genet, 2013, 7(5): 516-528.
doi: 10.1016/j.fsigen.2013.05.011 |
[6] |
Swaminathan H, Grgicak CM, Medard M, Lun DC. NOCIt: a computational method to infer the number of contributors to DNA samples analyzed by STR genotyping. Forensic Sci Int Genet, 2015, 16: 172-180.
doi: 10.1016/j.fsigen.2014.11.010 |
[7] |
Curran JM. A MCMC method for resolving two person mixtures. Sci Justice, 2008, 48(4): 168-177.
doi: 10.1016/j.scijus.2007.09.014 pmid: 19192678 |
[8] |
Gill P, Sparkes R, Pinchin R, Clayton T, Whitaker J, Buckleton J. Interpreting simple STR mixtures using allele peak areas. Forensic Sci Int, 1998, 91(1): 41-53.
pmid: 9493344 |
[9] |
Tvedebrink T, Eriksen PS, Mogensen HS, Morling N. Identifying contributors of DNA mixtures by means of quantitative information of STR typing. J Comput Biol, 2012, 19(7): 887-902.
doi: 10.1089/cmb.2010.0055 pmid: 21210742 |
[10] |
Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw, 2014, 69(3): 46-61.
doi: 10.1016/j.advengsoft.2013.12.007 |
[11] | Zhang S, Zhou YQ. Grey wolf optimizer based on powell local optimization method for clustering analysis. Discrete Dyn Nat Soc, 2015, 2015: 1-17. |
[12] |
Zhang S, Zhou YQ, Li ZM, Pan W. Grey wolf optimizer for unmanned combat aerial vehicle path planning. Adv Eng Softw, 2016, 99: 121-136.
doi: 10.1016/j.advengsoft.2016.05.015 |
[13] |
Khairuzzaman AKM, Chaudhury S. Multilevel thresholding using grey wolf optimizer for image segmentation. Expert Syst Appl, 2017, 86: 64-76.
doi: 10.1016/j.eswa.2017.04.029 |
[14] |
Zhang XF, Wang XY. Comprehensive review of grey wolf optimization algorithm. Comput Sci, 2019, 46(3): 30-38.
doi: 10.11896/j.issn.1002-137X.2019.03.004 |
张晓凤, 王秀英. 灰狼优化算法研究综述. 计算机科学, 2019, 46(3): 30-38.
doi: 10.11896/j.issn.1002-137X.2019.03.004 |
|
[15] |
Wang T, Xue N, Birdwell JD. Least-square deconvolution: a framework for interpreting short tandem repeat mixtures. J Forensic Sci, 2006, 51(6): 1284-1297.
pmid: 17199614 |
[16] |
Tvedebrink T. mixsep: An R-package for DNA mixture separation. Forensic Sci Int: Genet Suppl Ser, 2011, 3(1):e486-e488.
doi: 10.1016/j.fsigss.2011.09.104 |
[17] |
Clayton TM, Whitaker JP, Sparkes R, Gill P. Analysis and interpretation of mixed forensic stains using DNA STR profiling. Forensic Sci Int, 1998, 91(1): 55-70.
pmid: 9493345 |
[18] |
Børsting C, Morling N. Next generation sequencing and its applications in forensic genetics. Forensic Sci Int Genet, 2015, 18: 78-89.
doi: 10.1016/j.fsigen.2015.02.002 |
[19] |
Ji XC, Chi LJ, Xu Z, Peng Z, Ye J, Tu Z, Chen H. SMART: an analysis system for mixed str profiles. Forensic Sci Technol, 2022, 47(1): 1-9.
doi: 10.16467/j.1008-3650.2021.0136 |
季现超, 池连江, 徐珍, 彭柱, 叶健, 凃政, 陈华. SMART:自主研发的混合STR图谱分析系统. 刑事技术, 2022, 47(1): 1-9.
doi: 10.16467/j.1008-3650.2021.0136 |
|
[20] |
Fan HL, Xie QQ, Wang LX, Ru K, Tan XH, Ding JY, Wang X, Huang J, Wang Z, Li YN, Wang XH, He YT, Gu CH, Liu M, Ma SW, Wen SQ, Qiu PM. Microhaplotype and Y-SNP/STR (MY): A novel MPS-based system for genotype pattern recognition in two-person DNA mixtures. Forensic Sci Int Genet, 2022, 59: 102705.
doi: 10.1016/j.fsigen.2022.102705 |
[1] | 孔永强, 刘金凯, 顾佳琪, 徐景怡, 郑雨诺, 魏以梁, 伍少远. 南-北方汉族人、韩国人和日本人遗传划分机器学习模型优化方案[J]. 遗传, 2022, 44(11): 1028-1043. |
[2] | 郭晓媛, 孙昌春, 薛思瑶, 赵慧, 江丽, 李彩霞. 49AISNP:东亚北方三个族群遗传来源推断[J]. 遗传, 2021, 43(9): 880-889. |
[3] | 李茜, 王浩宇, 曹悦岩, 朱强, 舒潘寅, 侯婷芸, 王雨婷, 张霁. 微单倍型遗传标记的法医基因组学研究[J]. 遗传, 2021, 43(10): 962-971. |
[4] | 刘志勇, 乌日嘎, 李燃, 王蔷薇, 孙宏钰. 法医遗传学研究和鉴定中的伦理问题[J]. 遗传, 2021, 43(10): 994-1002. |
[5] | 刘杨, 孙昌春, 马咪, 王玲, 赵雯婷, 马泉, 季安全, 刘京, 李彩霞. 74-plex SNPs复合检测体系在中国人群中的族群推断研究[J]. 遗传, 2020, 42(3): 296-308. |
[6] | 江丽,孙启凡,马泉,赵雯婷,刘京,赵蕾,季安全,李彩霞. 27-plex SNP种族推断方法的优化及验证[J]. 遗传, 2017, 39(2): 166-173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: