遗传 ›› 2022, Vol. 44 ›› Issue (11): 1028-1043.doi: 10.16288/j.yczz.22-073
孔永强1(), 刘金凯1, 顾佳琪2, 徐景怡1, 郑雨诺2, 魏以梁2(), 伍少远1,2()
收稿日期:
2022-05-03
修回日期:
2022-07-13
出版日期:
2022-11-20
发布日期:
2022-08-11
通讯作者:
魏以梁,伍少远
E-mail:kongyongqiang@tmu.edu.cn;weiyiliang.2013@tsinghua.org.cn;shaoyuan5@gmail.com
作者简介:
孔永强,在读硕士研究生,专业方向:生物学。E-mail: 基金资助:
Yongqiang Kong1(), Jinkai Liu1, Jiaqi Gu2, Jingyi Xu1, Yunuo Zheng2, Yiliang Wei2(), Shaoyuan Wu1,2()
Received:
2022-05-03
Revised:
2022-07-13
Online:
2022-11-20
Published:
2022-08-11
Contact:
Wei Yiliang,Wu Shaoyuan
E-mail:kongyongqiang@tmu.edu.cn;weiyiliang.2013@tsinghua.org.cn;shaoyuan5@gmail.com
Supported by:
摘要:
中国汉族人、韩国人和日本人作为东亚主体人群,其中中国汉族人呈现由北向南的梯度混合,在遗传结构上存在不同程度的差异。为实现对中国南-北方汉族人、韩国人和日本人的高分辨率遗传划分,本研究收集和分析了文献报道和实验室前期数据筛选出的1185个东亚人群祖先信息性SNPs (ancestry informative SNPs, AISNPs),应用softmax与随机森林两种机器学习算法构建族群遗传划分模型,然后利用系统发育树、STRUCTURE和主成分分析方法进一步评估不同模型AISNPs位点组合的族群分类效果,最终筛选出234-AISNP的最优组合,softmax模型准确率为92%,实现了南方汉族人、北方汉族人、韩国人和日本人的高精度区分。本研究测试的两种机器学习算法模型为近距离人群的高分辨率划分提供了重要参考,可作为法医DNA族群推断体系位点开发的重要工具。
孔永强, 刘金凯, 顾佳琪, 徐景怡, 郑雨诺, 魏以梁, 伍少远. 南-北方汉族人、韩国人和日本人遗传划分机器学习模型优化方案[J]. 遗传, 2022, 44(11): 1028-1043.
Yongqiang Kong, Jinkai Liu, Jiaqi Gu, Jingyi Xu, Yunuo Zheng, Yiliang Wei, Shaoyuan Wu. Optimization scheme of machine learning model for genetic division between northern Han, southern Han, Korean and Japanese[J]. Hereditas(Beijing), 2022, 44(11): 1028-1043.
表3
AISNP收集与来源"
目标区分人群 | 样本量 | 参考来源 |
---|---|---|
中国汉族人 | 461 | Qin等(2014)[ |
韩国人 | 141 | Jeon等(2020)[ |
东亚人(韩国人) | 100 | Jung等(2019)[ |
日本人 | 111 | Aklyma等(2017)[ |
中国汉族人、韩国人和日本人 | 341 | Shi等(2019)[ |
东亚人 | 8 | Kim等(2005)[ |
中国北方汉族人和日本人 | 23 | 本实验室[ |
表4
在softmax和随机森林模型中参考集与测试集的表现评估"
AISNP数 | 准确率(95%置信区间) | kappa系数 | ||
---|---|---|---|---|
softmax | 随机森林 | softmax | 随机森林 | |
92 | 0.7538(0.6879~0.8119) | 0.7337(0.6665~0.7937) | 0.6339 | 0.6155 |
156 | 0.8844(0.8316~0.9253) | 0.7889(0.7256~0.8435) | 0.8156 | 0.6925 |
234 | 0.9196(0.8727~0.9533) | 0.8342(0.7751~0.883) | 0.8713 | 0.7554 |
326 | 0.9095(0.8608~0.9455) | 0.7839(0.7202~0.839) | 0.8532 | 0.6564 |
471 | 0.9146(0.8667~0.9494) | 0.8241(0.764~0.8743) | 0.8605 | 0.7285 |
534 | 0.9196(0.8727~0.9533) | 0.7889(0.7256~0.8435) | 0.8693 | 0.6778 |
661 | 0.4573(0.3867~0.5292) | 0.8191(0.7585~0.87) | 0.358 | 0.719 |
735 | 0.1457 (0.0998~0.2025) | 0.9447(0.9032~0.9721) | 0 | 0.914 |
829 | 0.4422(0.372~0.5141) | 0.9146(0.8667~0.9494) | 0.3022 | 0.8679 |
950 | 0.4824(0.4112~0.5542) | 0.8693(0.8144~0.9128) | 0.3651 | 0.7935 |
1128 | 0.4724(0.4014~0.5442) | 0.8794(0.8259~0.9212) | 0.3316 | 0.8076 |
表5
234-AISNP组合的信息"
rs号 | 染色体 | 第37版序列位置 | 等位基因 | Fst | In | rs号 | 染色体 | 第37版序列位置 | 等位基因 | Fst | In |
---|---|---|---|---|---|---|---|---|---|---|---|
rs11119385 | 1 | 205317503 | C/T | 0.024 | 0.005 | rs6478966 | 9 | 93716118 | T/C | 0.029 | 0.006 |
rs11161614 | 1 | 48334490 | A/C | 0.051 | 0.011 | rs7022178 | 9 | 16806521 | T/A/C | 0.073 | 0.015 |
rs11164354 | 1 | 70295901 | C/T | 0.022 | 0.005 | rs7032231 | 9 | 108878562 | C/T | 0.062 | 0.014 |
rs11805598 | 1 | 151830098 | C/T | 0.016 | 0.004 | rs7038964 | 9 | 101776125 | G/A | 0.052 | 0.012 |
rs1371566 | 1 | 230137518 | A/G | 0.032 | 0.007 | rs943327 | 9 | 101356091 | C/G | 0.015 | 0.003 |
rs1442502 | 1 | 165380623 | G/A | 0.032 | 0.007 | rs998410 | 9 | 100556109 | A/G/T | 0.054 | 0.012 |
rs1564032 | 1 | 244136216 | G/A | 0.014 | 0.003 | rs10900048 | 10 | 25401705 | G/A | 0.016 | 0.004 |
rs2430184 | 1 | 184795779 | C/T | 0.031 | 0.007 | rs1341667 | 10 | 64415184 | A/C/G | 0.028 | 0.006 |
rs2488457 | 1 | 114377568 | A/G | 0.011 | 0.002 | rs17121800 | 10 | 104320029 | G/T | 0.068 | 0.013 |
rs4414069 | 1 | 199244248 | G/C/T | 0.020 | 0.004 | rs2295756 | 10 | 77504287 | A/G | 0.032 | 0.007 |
rs520605 | 1 | 166548317 | G/A | 0.013 | 0.003 | rs4372441 | 10 | 127954919 | G/A | 0.053 | 0.012 |
rs6549596 | 1 | 31183486 | C/T | 0.022 | 0.005 | rs4918000 | 10 | 21762267 | A/G | 0.044 | 0.010 |
rs723848 | 1 | 172862939 | C/T | 0.043 | 0.009 | rs703989 | 10 | 44987921 | T/A/C | 0.017 | 0.004 |
rs929115 | 1 | 164459913 | C/G/T | 0.052 | 0.011 | rs7909976 | 10 | 13914443 | C/A/T | 0.020 | 0.005 |
rs10929660 | 2 | 1985248 | G/A | 0.034 | 0.007 | rs978605 | 10 | 94837743 | C/T | 0.031 | 0.008 |
rs12151767 | 2 | 193385209 | A/G | 0.055 | 0.012 | rs10431079 | 11 | 101351383 | G/A | 0.053 | 0.011 |
rs12691557 | 2 | 124764392 | C/T | 0.013 | 0.003 | rs10894034 | 11 | 116440011 | T/C | 0.010 | 0.002 |
rs13390103 | 2 | 142291181 | T/A/C | 0.019 | 0.004 | rs11034709 | 11 | 19209050 | T/C | 0.079 | 0.015 |
rs1453054 | 2 | 171693639 | C/G/T | 0.020 | 0.004 | rs11222851 | 11 | 129255618 | C/T | 0.024 | 0.005 |
rs16834705 | 2 | 187743228 | T/G | 0.034 | 0.008 | rs11223550 | 11 | 131832284 | G/T | 0.046 | 0.010 |
rs16850913 | 2 | 137349278 | G/A | 0.069 | 0.016 | rs11224765 | 11 | 99884272 | A/G | 0.063 | 0.013 |
rs2042020 | 2 | 5702577 | C/T | 0.031 | 0.007 | rs12574415 | 11 | 68091265 | C/T | 0.024 | 0.005 |
rs2194757 | 2 | 10529961 | A/C/G | 0.011 | 0.003 | rs1566734 | 11 | 18281916 | C/T | 0.019 | 0.004 |
rs4254643 | 2 | 231582797 | T/C | 0.024 | 0.007 | rs174583 | 11 | 48145375 | A/C | 0.039 | 0.008 |
rs4611596 | 2 | 130255181 | A/G | 0.024 | 0.005 | rs1794072 | 11 | 38428289 | A/G | 0.019 | 0.004 |
rs4675874 | 2 | 234858801 | G/A | 0.013 | 0.003 | rs1835298 | 11 | 109322914 | C/G | 0.017 | 0.004 |
rs6436971 | 2 | 198274929 | G/A | 0.066 | 0.015 | rs4491175 | 11 | 61303803 | C/G/T | 0.053 | 0.012 |
rs6717406 | 2 | 166421763 | A/G | 0.037 | 0.010 | rs4578397 | 11 | 116440678 | A/G | 0.071 | 0.014 |
rs7569376 | 2 | 48955683 | A/G | 0.022 | 0.005 | rs4938285 | 11 | 112057620 | G/A | 0.043 | 0.009 |
rs7630111 | 2 | 191344132 | C/T | 0.040 | 0.009 | rs659366 | 11 | 69462910 | G/A | 0.016 | 0.004 |
rs11128125 | 3 | 61814273 | G/T | 0.040 | 0.008 | rs7117447 | 11 | 101310590 | C/T | 0.082 | 0.017 |
rs1225051 | 3 | 49971514 | C/A/G/T | 0.012 | 0.003 | rs713278 | 11 | 133532372 | A/G | 0.048 | 0.011 |
rs12488690 | 3 | 149344615 | C/A | 0.048 | 0.012 | rs741245 | 11 | 133547942 | T/A/G | 0.023 | 0.005 |
rs1488485 | 3 | 1454063 | C/T | 0.027 | 0.006 | rs770576 | 11 | 90956214 | T/A/C | 0.053 | 0.011 |
rs1613215 | 3 | 74954560 | A/C/T | 0.039 | 0.009 | rs10858883 | 12 | 41753811 | C/G/T | 0.037 | 0.008 |
rs16862627 | 3 | 69389614 | T/A/C/G | 0.013 | 0.003 | rs11104947 | 12 | 69906287 | A/G/T | 0.084 | 0.019 |
rs17008485 | 3 | 17194071 | G/A | 0.014 | 0.003 | rs3217805 | 12 | 4227248 | G/A | 0.073 | 0.017 |
rs1709621 | 3 | 172389873 | G/C | 0.022 | 0.005 | rs4533076 | 12 | 638166 | C/T | 0.045 | 0.010 |
rs17582830 | 3 | 114165901 | C/A/T | 0.018 | 0.004 | rs9532080 | 12 | 88942980 | G/A | 0.052 | 0.012 |
rs4353835 | 3 | 11220006 | C/A | 0.070 | 0.013 | rs9549212 | 12 | 128910954 | A/C/T | 0.038 | 0.009 |
rs4678169 | 3 | 94033744 | G/C/T | 0.030 | 0.007 | rs10492574 | 13 | 90173515 | A/C/G | 0.055 | 0.012 |
rs6599390 | 3 | 181497374 | G/A | 0.025 | 0.005 | rs11841589 | 13 | 46695350 | T/C | 0.087 | 0.016 |
rs9826148 | 3 | 100936248 | C/A/G | 0.039 | 0.009 | rs11841652 | 13 | 43086351 | A/G | 0.011 | 0.002 |
rs9852677 | 3 | 32451697 | C/A | 0.028 | 0.006 | rs11846710 | 13 | 73814891 | G/T | 0.052 | 0.011 |
rs9857773 | 3 | 138730737 | C/T | 0.042 | 0.009 | rs12589835 | 13 | 108536028 | C/T | 0.031 | 0.007 |
rs9860483 | 3 | 130021945 | G/A | 0.081 | 0.016 | rs1322944 | 13 | 41022093 | C/T | 0.048 | 0.011 |
rs9869826 | 3 | 45900369 | G/A/T | 0.015 | 0.003 | rs1333099 | 13 | 53683163 | A/G | 0.053 | 0.011 |
rs1026975 | 4 | 99304600 | A/G | 0.025 | 0.006 | rs1751034 | 13 | 47411985 | A/G | 0.019 | 0.004 |
rs11466640 | 4 | 38138661 | C/T | 0.026 | 0.006 | rs452748 | 13 | 99683635 | T/C | 0.019 | 0.005 |
rs1522221 | 4 | 71229896 | G/A/T | 0.026 | 0.006 | rs4941430 | 13 | 27534715 | G/A | 0.026 | 0.005 |
rs16997770 | 4 | 113971374 | T/G | 0.058 | 0.013 | rs9513535 | 13 | 94969796 | T/C | 0.052 | 0.011 |
rs17016175 | 4 | 143373910 | A/G/T | 0.022 | 0.005 | rs10132336 | 14 | 71262932 | T/C | 0.038 | 0.009 |
rs17239258 | 4 | 178295766 | G/A/T | 0.027 | 0.007 | rs10134903 | 14 | 88682616 | G/A | 0.023 | 0.005 |
rs17579988 | 4 | 19044103 | G/A | 0.018 | 0.004 | rs10139575 | 14 | 50481926 | T/C | 0.020 | 0.004 |
rs17583068 | 4 | 24728480 | G/A | 0.028 | 0.006 | rs10483991 | 14 | 80242132 | T/C/G | 0.050 | 0.011 |
rs2035023 | 4 | 124693346 | T/C | 0.052 | 0.010 | rs11159882 | 14 | 88006776 | T/G | 0.029 | 0.007 |
rs2622637 | 4 | 100335874 | C/A | 0.076 | 0.017 | rs11625485 | 14 | 74869017 | A/G/T | 0.054 | 0.011 |
rs279845 | 4 | 46305733 | T/C | 0.013 | 0.003 | rs1256520 | 14 | 57087118 | A/C/G | 0.049 | 0.011 |
rs2972336 | 4 | 143391299 | A/G | 0.032 | 0.007 | rs12588061 | 14 | 40942142 | C/G | 0.042 | 0.010 |
rs3775539 | 4 | 84577025 | T/C | 0.039 | 0.009 | rs174520 | 14 | 65737193 | C/A | 0.053 | 0.012 |
rs4865142 | 4 | 53278689 | G/A | 0.043 | 0.010 | rs17823795 | 14 | 58343352 | G/A | 0.033 | 0.008 |
rs639617 | 4 | 178655568 | C/T | 0.030 | 0.006 | rs4902391 | 14 | 65811537 | T/C | 0.045 | 0.010 |
rs7666030 | 4 | 956047 | A/G | 0.015 | 0.003 | rs8005568 | 14 | 101151012 | C/G/T | 0.040 | 0.009 |
rs7676014 | 4 | 4346373 | C/T | 0.046 | 0.009 | rs8015594 | 14 | 40865770 | G/A | 0.054 | 0.011 |
rs10058739 | 5 | 127677188 | T/C | 0.014 | 0.003 | rs10459664 | 15 | 27940339 | A/G | 0.052 | 0.011 |
rs10806975 | 5 | 167397540 | C/T | 0.011 | 0.002 | rs17822931 | 15 | 84586464 | T/C | 0.037 | 0.009 |
rs11745587 | 5 | 88188058 | A/C/G | 0.021 | 0.005 | rs2313427 | 15 | 70123826 | T/G | 0.028 | 0.006 |
rs11959012 | 5 | 165711426 | G/A | 0.035 | 0.008 | rs4486887 | 15 | 35064934 | C/T | 0.033 | 0.007 |
rs12654905 | 5 | 11984496 | T/A/G | 0.024 | 0.005 | rs11639903 | 16 | 9222411 | A/G | 0.011 | 0.002 |
rs13160399 | 5 | 144030993 | C/A/T | 0.040 | 0.009 | rs1420288 | 16 | 50677571 | C/T | 0.041 | 0.009 |
rs1422931 | 5 | 144074365 | G/A | 0.019 | 0.004 | rs160539 | 16 | 63282080 | A/G/T | 0.036 | 0.008 |
rs1428150 | 5 | 89518433 | A/C | 0.040 | 0.008 | rs2297514 | 16 | 89972345 | T/C | 0.026 | 0.006 |
rs1468722 | 5 | 143038150 | G/A/C/T | 0.013 | 0.003 | rs2353686 | 16 | 63353953 | C/G | 0.032 | 0.008 |
rs17076328 | 5 | 169750158 | G/T | 0.013 | 0.003 | rs4280278 | 16 | 29288634 | T/C | 0.047 | 0.010 |
rs17207681 | 5 | 132490807 | A/G | 0.051 | 0.012 | rs6502840 | 16 | 82273372 | G/A | 0.042 | 0.009 |
rs17451739 | 5 | 142018424 | T/G | 0.056 | 0.013 | rs8049660 | 16 | 86354605 | T/C | 0.043 | 0.009 |
rs17599827 | 5 | 65596821 | T/C | 0.059 | 0.014 | rs8060207 | 16 | 54477881 | T/C | 0.039 | 0.009 |
rs17631488 | 5 | 18680420 | A/T | 0.072 | 0.014 | rs16944149 | 17 | 8135061 | T/C | 0.025 | 0.006 |
rs2589787 | 5 | 11202649 | C/A/T | 0.035 | 0.008 | rs16966855 | 17 | 26093315 | T/C/G | 0.010 | 0.002 |
rs304141 | 5 | 79020426 | A/G | 0.076 | 0.016 | rs2068746 | 17 | 1243941 | C/T | 0.021 | 0.005 |
rs315808 | 5 | 167668843 | C/T | 0.066 | 0.013 | rs2642066 | 17 | 58184540 | T/C | 0.067 | 0.014 |
rs4912933 | 5 | 132561277 | G/A/C/T | 0.028 | 0.006 | rs9303660 | 17 | 28526475 | T/C | 0.021 | 0.005 |
rs6898653 | 5 | 110585627 | C/T | 0.045 | 0.009 | rs9941426 | 17 | 75668619 | C/A/G/T | 0.044 | 0.010 |
rs11042911 | 6 | 33024654 | A/C | 0.036 | 0.007 | rs11086012 | 18 | 76478188 | A/G | 0.015 | 0.003 |
rs1178148 | 6 | 138406328 | C/A/T | 0.039 | 0.009 | rs1561201 | 18 | 1948608 | A/C/G/T | 0.014 | 0.003 |
rs12660882 | 6 | 108906200 | C/T | 0.015 | 0.003 | rs17072984 | 18 | 57332158 | T/G | 0.048 | 0.011 |
rs1539348 | 6 | 63640369 | C/T | 0.011 | 0.002 | rs1708698 | 18 | 28158452 | C/A | 0.014 | 0.003 |
rs210798 | 6 | 134423175 | A/T | 0.013 | 0.003 | rs2278339 | 18 | 10029988 | G/A/T | 0.031 | 0.009 |
rs480631 | 6 | 130102959 | C/T | 0.024 | 0.005 | rs2377962 | 18 | 455128 | A/G | 0.076 | 0.017 |
rs6924957 | 6 | 79659170 | A/G | 0.039 | 0.009 | rs475235 | 18 | 9101722 | G/T | 0.042 | 0.009 |
rs761798 | 6 | 33047031 | T/C | 0.015 | 0.003 | rs6117562 | 18 | 46454048 | A/G/T | 0.032 | 0.007 |
rs7740161 | 6 | 120775626 | G/A | 0.016 | 0.004 | rs9964230 | 18 | 852562 | G/A | 0.022 | 0.005 |
rs258728 | 7 | 8859616 | C/T | 0.023 | 0.005 | rs7268940 | 19 | 39206288 | C/T | 0.037 | 0.008 |
rs321967 | 7 | 66699784 | T/C | 0.017 | 0.004 | rs8107011 | 19 | 10666112 | G/A/T | 0.030 | 0.007 |
rs3757419 | 7 | 55238464 | T/A/G | 0.032 | 0.007 | rs16986850 | 20 | 39263421 | C/A | 0.033 | 0.008 |
rs3757425 | 7 | 125115418 | A/G | 0.034 | 0.007 | rs16991180 | 20 | 2090118 | C/A/T | 0.055 | 0.012 |
rs3923736 | 7 | 81663275 | C/A | 0.050 | 0.011 | rs17377643 | 20 | 23727145 | C/T | 0.052 | 0.011 |
rs4718412 | 7 | 66029429 | C/T | 0.060 | 0.013 | rs2837352 | 20 | 12905188 | T/A/C | 0.023 | 0.005 |
rs6465469 | 7 | 81697666 | A/C | 0.011 | 0.002 | rs6030932 | 20 | 41048928 | T/C | 0.051 | 0.011 |
rs7006443 | 7 | 155060730 | A/C/G/T | 0.041 | 0.012 | rs6123723 | 20 | 12921966 | T/C | 0.047 | 0.012 |
rs7794745 | 7 | 141673345 | C/G | 0.012 | 0.003 | rs760873 | 20 | 42146320 | T/G | 0.054 | 0.012 |
rs7802058 | 7 | 78314549 | G/A/C | 0.014 | 0.003 | rs1524930 | 21 | 37999799 | C/T | 0.033 | 0.007 |
rs10504726 | 8 | 72774349 | G/A | 0.020 | 0.004 | rs2330015 | 21 | 40287238 | A/C/T | 0.043 | 0.010 |
rs10957985 | 8 | 80568935 | T/A/C | 0.041 | 0.009 | rs2836749 | 21 | 22447717 | A/G | 0.030 | 0.007 |
rs12676684 | 8 | 88289450 | G/T | 0.053 | 0.012 | rs6000401 | 21 | 45246422 | A/G | 0.037 | 0.008 |
rs1517114 | 8 | 18258316 | G/A/T | 0.013 | 0.003 | rs928844 | 21 | 23231832 | C/T | 0.055 | 0.012 |
rs1537523 | 8 | 119479124 | G/C/T | 0.026 | 0.007 | rs12483769 | 22 | 47271217 | T/C/G | 0.047 | 0.009 |
rs2945733 | 8 | 10097398 | G/A | 0.044 | 0.010 | rs131864 | 22 | 41537589 | A/G | 0.037 | 0.008 |
rs2976396 | 8 | 134615750 | T/G | 0.116 | 0.026 | rs17002737 | 22 | 42280618 | T/C | 0.053 | 0.012 |
rs4922234 | 8 | 9712822 | C/G/T | 0.013 | 0.003 | rs17129041 | 22 | 24825511 | C/A/T | 0.022 | 0.005 |
rs10521076 | 9 | 104423907 | C/T | 0.054 | 0.012 | rs198464 | 22 | 49595560 | C/T | 0.028 | 0.006 |
rs10991718 | 9 | 89140339 | G/A | 0.025 | 0.006 | rs2269658 | 22 | 42241372 | G/A/T | 0.038 | 0.008 |
rs12006467 | 9 | 29780195 | G/A | 0.071 | 0.014 | rs229562 | 22 | 22536956 | C/T | 0.056 | 0.012 |
rs12351269 | 9 | 3430684 | T/C | 0.037 | 0.008 | rs4820428 | 22 | 37149336 | C/T | 0.029 | 0.008 |
rs1875174 | 9 | 136079463 | C/T | 0.025 | 0.005 | rs5770018 | 22 | 48282309 | G/A/C | 0.014 | 0.003 |
rs1981500 | 9 | 117032448 | T/C | 0.028 | 0.007 | rs6007756 | 22 | 37599065 | G/T | 0.030 | 0.007 |
rs2636864 | 9 | 92800165 | G/C | 0.038 | 0.008 | rs860236 | 22 | 42605548 | C/T | 0.016 | 0.006 |
[1] |
Phillips C. Forensic genetic analysis of bio-geographical ancestry. Forensic Sci Int Genet, 2015, 18: 49-65.
doi: 10.1016/j.fsigen.2015.05.012 |
[2] |
Tishkoff SA, Kidd KK. Implications of biogeography of human populations for 'race' and medicine. Nat Genet, 2004, 36(< W>11 Suppl): S21-S27.
doi: 10.1038/ng1438 |
[3] |
Marchini J, Cardon LR, Phillips MS, Donnelly P. The effects of human population structure on large genetic association studies. Nat Genet, 2004, 36(5): 512-517.
pmid: 15052271 |
[4] |
Paschou P, Lewis J, Javed A, Drineas P. Ancestry informative markers for fine-scale individual assignment to worldwide populations. J Med Genet, 2010, 47(12): 835-847.
doi: 10.1136/jmg.2010.078212 |
[5] |
Phillips C, Salas A, Sánchez JJ, Fondevila M, Gómez-Tato A, Alvarez-Dios J, Calaza M, de Cal MC, Ballard D, Lareu MV, Carracedo A. Inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs. Forensic Sci Int Genet, 2007, 1(3-4): 273-280.
doi: 10.1016/j.fsigen.2007.06.008 |
[6] |
Kidd KK, Speed WC, Pakstis AJ, Furtado MR, Fang RX, Madbouly A, Maiers M, Middha M, Friedlaender FR, Kidd JR. Progress toward an efficient panel of SNPs for ancestry inference. Forensic Sci Int Genet, 2014, 10: 23-32.
doi: 10.1016/j.fsigen.2014.01.002 |
[7] | Jiang L, Sun QF, Ma Q, Zhao WT, Liu J, Zhao L, Ji AQ, Li CX. Optimization and validation of analysis method based on 27-plex SNP panel for ancestry inference. Hereditas (Beijing), 2017, 39(2): 166-173. |
江丽, 孙启凡, 马泉, 赵雯婷, 刘京, 赵蕾, 季安全, 李彩霞. 27-plex SNP 种族推断方法的优化及验证. 遗传, 2017, 39(2): 166-173. | |
[8] |
Qin PF, Li ZQ, Jin WF, Lu DS, Lou HY, Shen JW, Jin L, Shi YY, Xu SH. A panel of ancestry informative markers to estimate and correct potential effects of population stratification in Han Chinese. Eur J Hum Genet, 2014, 22(2): 248-253.
doi: 10.1038/ejhg.2013.111 pmid: 23714748 |
[9] |
Wang YC, Lu DS, Chung YJ, Xu SH. Genetic structure, divergence and admixture of Han Chinese, Japanese and Korean populations. Hereditas, 2018, 155: 19.
doi: 10.1186/s41065-018-0057-5 pmid: 29636655 |
[10] |
Shi CM, Liu Q, Zhao SL, Chen H. Ancestry informative SNP panels for discriminating the major East Asian populations: Han Chinese, Japanese and Korean. Ann Hum Genet, 2019, 83(5): 348-354.
doi: 10.1111/ahg.12320 |
[11] |
Wang CC, Yeh HY, Popov AN, Zhang HQ, Matsumura H, Sirak K, Cheronet O, Kovalev A, Rohland N, Kim AM, Mallick S, Bernardos R, Tumen D, Zhao J, Liu YC, Liu JY, Mah M, Wang K, Zhang Z, Adamski N, Broomandkhoshbacht N, Callan K, Candilio F, Carlson KSD, Culleton BJ, Eccles L, Freilich S, Keating D, Lawson AM, Mandl K, Michel M, Oppenheimer J, Özdoğan KT, Stewardson K, Wen SQ, Yan S, Zalzala F, Chuang R, Huang CJ, Looh H, Shiung CC, Nikitin YG, Tabarev AV, Tishkin AA, Lin S, Sun ZY, Wu XM, Yang TL, Hu X, Chen L, Du H, Bayarsaikhan J, Mijiddorj E, Erdenebaatar D, Iderkhangai TO, Myagmar E, Kanzawa-Kiriyama H, Nishino M, Shinoda KI, Shubina OA, Guo J, Cai WW, Deng QY, Kang LL, Li D, Li DW, Lin RM, Nini, Shrestha R, Wang LX, Wei LW, Xie GM, Yao HB, Zhang MF, He GL, Yang XM, Hu R, Robbeets M, Schiffels S, Kennett DJ, Jin L, Li H, Krause J, Pinhasi R, Reich D. Genomic insights into the formation of human populations in East Asia. Nature, 2021, 591(7850): 413-419.
doi: 10.1038/s41586-021-03336-2 |
[12] |
Jung JY, Kang PW, Kim E, Chacon D, Beck D, McNevin D. Ancestry informative markers (AIMs) for Korean and other East Asian and South East Asian populations. Int J Legal Med, 2019, 133(6): 1711-1719.
doi: 10.1007/s00414-019-02129-7 pmid: 31388795 |
[13] |
Okada Y, Momozawa Y, Sakaue S, Kanai M, Ishigaki K, Akiyama M, Kishikawa T, Arai Y, Sasaki T, Kosaki K, Suematsu M, Matsuda K, Yamamoto K, Kubo M, Hirose N, Kamatani Y. Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese. Nat Commun, 2018, 9(1): 1631.
doi: 10.1038/s41467-018-03274-0 pmid: 29691385 |
[14] |
Akiyama M, Okada Y, Kanai M, Takahashi A, Momozawa Y, Ikeda M, Iwata N, Ikegawa S, Hirata M, Matsuda K, Iwasaki M, Yamaji T, Sawada N, Hachiya T, Tanno K, Shimizu A, Hozawa A, Minegishi N, Tsugane S, Yamamoto M, Kubo M, Kamatani Y. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat Genet, 2017, 49(10): 1458-1467.
doi: 10.1038/ng.3951 pmid: 28892062 |
[15] |
Liu SY, Huang SJ, Chen F, Zhao LJ, Yuan YY, Francis SS, Fang L, Li ZL, Lin L, Liu R, Zhang Y, Xu HX, Li SK, Zhou YW, Davies RW, Liu Q, Walters RG, Lin K, Ju J, Korneliussen T, Yang MA, Fu QM, Wang J, Zhou LJ, Krogh A, Zhang HY, Wang W, Chen ZM, Cai ZM, Yin Y, Yang HM, Mao M, Shendure J, Wang J, Albrechtsen A, Jin X, Nielsen R, Xu X. Genomic analyses from non-invasive prenatal testing reveal genetic associations, patterns of viral infections, and Chinese population history. Cell, 2018, 175(2): 347-359.
doi: S0092-8674(18)31032-8 pmid: 30290141 |
[16] |
Xu SH, Yin XY, Li SL, Jin WF, Lou HY, Yang L, Gong XH, Wang HY, Shen YP, Pan XD, He YG, Yang YJ, Wang Y, Fu WQ, An Y, Wang JC, Tan JZ, Qian J, Chen XL, Zhang X, Sun YF, Zhang XJ, Wu BL, Jin L. Genomic dissection of population substructure of Han Chinese and its implication in association studies. Am J Hum Genet, 2009, 85(6): 762-774.
doi: 10.1016/j.ajhg.2009.10.015 |
[17] |
Jeon S, Bhak Y, Choi Y, Jeon Y, Kim S, Jang J, Jang J, Blazyte A, Kim C, Kim Y, Shim J, Kim N, Kim YJ, Park SG, Kim J, Cho YS, Park Y, Kim HM, Kim BC, Park NH, Shin ES, Kim BC, Bolser D, Manica A, Edwards JS, Church G, Lee S, Bhak J. Korean genome project: 1094 Korean personal genomes with clinical information. Sci Adv, 2020, 6(22): eaaz7835.
doi: 10.1126/sciadv.aaz7835 |
[18] |
Cao YN, Li L, Xu M, Feng ZM, Sun XH, Lu JL, Xu Y, Du PN, Wang TG, Hu RY, Ye Z, Shi LX, Tang XL, Yan L, Gao ZN, Chen G, Zhang YF, Chen LL, Ning G, Bi YF, Wang WQ, Consortium C. The ChinaMAP analytics of deep whole genome sequences in 10,588 individuals. Cell Res, 2020, 30(9): 717-731.
doi: 10.1038/s41422-020-0322-9 pmid: 32355288 |
[19] |
Jinam TA, Kanzawa-Kiriyama H, Inoue I, Tokunaga K, Omoto K, Saitou N. Unique characteristics of the Ainu population in Northern Japan. J Hum Genet, 2015, 60(10): 565-571.
doi: 10.1038/jhg.2015.79 pmid: 26178428 |
[20] |
Kim JJ, Verdu P, Pakstis AJ, Speed WC, Kidd JR, Kidd KK. Use of autosomal loci for clustering individuals and populations of East Asian origin. Hum Genet, 2005, 117(6): 511-519.
doi: 10.1007/s00439-005-1334-8 |
[21] | Clarke L, Fairley S, Zheng-Bradley X, Streeter I, Perry E, Lowy E, Tassé A-M, and Flicek P. The international genome sample resource (IGSR): a worldwide collection of genome variation incorporating the 1000 genomes project data. Nucleic Acids Res, 2016, 45(1): 854-859. |
[22] |
Zhang WQ, Meehan J, Su ZQ, Ng HW, Shu M, Luo H, Ge WG, Perkins R, Tong WD, Hong HX. Whole genome sequencing of 35 individuals provides insights into the genetic architecture of Korean population. BMC Bioinformatics, 2014, 15(11): 6-18.
doi: 10.1186/1471-2105-15-6 |
[23] |
Byrska-Bishop M, Evani US, Zhao XF, Basile AO, Abel HJ, Regier AA, Corvelo A, Clarke WE, Musunuri R, Nagulapalli K, Fairley S, Runnels A, Winterkorn L, Lowy E, Flicek P, Germer S, Brand H, Hall IM, Talkowski ME, Narzisi G, Zody MC, The Human Genome Structural Variation Consortium. High coverage whole genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios. bioRxiv, 2021, doi: 10.1101/2021.02.06.430068.
doi: 10.1101/2021.02.06.430068 |
[24] |
Bergström A, McCarthy SA, Hui RY, Almarri MA, Ayub Q, Danecek P, Chen Y, Felkel S, Hallast P, Kamm J, Blanché H, Deleuze JF, Cann H, Mallick S, Reich D, Sandhu MS, Skoglund P, Scally A, Xue YL, Durbin R, Tyler-Smith C. Insights into human genetic variation and population history from 929 diverse genomes. Science, 2020, 367(6484): eaay5012.
doi: 10.1126/science.aay5012 |
[25] | Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, Zhao MY, Chennagiri N, Nordenfelt S, Tandon A, Skoglund P, Lazaridis I, Sankararaman S, Fu QM, Rohland N, Renaud G, Erlich Y, Willems T, Gallo C, Spence JP, Song YS, Poletti G, Balloux F, van Driem G, de Knijff P, Romero IG, Jha AR, Behar DM, Bravi CM, Capelli C, Hervig T, Moreno-Estrada A, Posukh OL, Balanovska E, Balanovsky O, Karachanak-Yankova S, Sahakyan H, Toncheva D, Yepiskoposyan L, Tyler-Smith C, Xue YL, Abdullah MS, Ruiz-Linares A, Beall CM, Di Rienzo A, Jeong C, Starikovskaya EB, Metspalu E, Parik J, Villems R, Henn BM, Hodoglugil U, Mahley R, Sajantila A, Stamatoyannopoulos G, Wee JTS, Khusainova R, Khusnutdinova E, Litvinov S, Ayodo G, Comas D, Hammer MF, Kivisild T, Klitz W, Winkler CA, Labuda D, Bamshad M, Jorde LB, Tishkoff SA, Watkins WS, Metspalu M, Dryomov S, Sukernik R, Singh L, Thangaraj K, Pääbo S, Kelso J, Patterson N, Reich D. The Simons genome diversity project: 300 genomes from 142 diverse populations. Nature, 2016, 538(7624): 201-206. |
[26] |
Liu XY, Lu DS, Saw WY, Shaw PJ, Wangkumhang P, Ngamphiw C, Fucharoen S, Lert-Itthiporn W, Chin- Inmanu K, Chau TNB, Anders K, Kasturiratne A, de Silva HJ, Katsuya T, Kimura R, Nabika T, Ohkubo T, Tabara Y, Takeuchi F, Yamamoto K, Yokota M, Mamatyusupu D, Yang WJ, Chung YJ, Jin L, Hoh BP, Wickremasinghe AR, Ong RH, Khor CC, Dunstan SJ, Simmons C, Tongsima S, Suriyaphol P, Kato N, Xu SH, Teo YY. Characterising private and shared signatures of positive selection in 37 Asian populations. Eur J Hum Genet, 2017, 25(4): 499-508.
doi: 10.1038/ejhg.2016.181 pmid: 28098149 |
[27] | Wen H, Wei YL, Guo XY, Sun CC, Xue SY, Liu J, Fan H, Jiang L. High-resolution SNP ancestry inference model and efficiency evaluation in three East Asian populations. Prog Biochem Biophys, 2021, 48(8): 973-981. |
文豪, 魏以梁, 郭晓媛, 孙昌春, 薛思瑶, 刘京, 范虹, 江丽. 东亚三族群SNP高分辨推断模型构建与效能评估. 生物化学与生物物理进展, 2021, 48(8): 973-981. | |
[28] | Guo XY, Sun CC, Xue SY, Zhao H, Jiang L, Li CX. 49AISNP: a study on the ancestry inference of the three ethnic groups in the north of East Asia. Hereditas (Beijing), 2021, 43(9): 880-889. |
郭晓媛, 孙昌春, 薛思瑶, 赵慧, 江丽, 李彩霞. 49AISNP:东亚北方三个族群遗传来源推断. 遗传, 2021, 43(9): 880-889. | |
[29] |
Kim T, Seo HD, Hennighausen L, Lee D, Kang K. Octopus-toolkit: a workflow to automate mining of public epigenomic and transcriptomic next-generation sequencing data. Nucleic Acids Res, 2018, 46(9): 53-58.
doi: 10.1093/nar/gky083 pmid: 29420797 |
[30] | 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR. A global reference for human genetic variation. Nature, 2015, 526(7571): 68-74. |
[31] |
Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, Zhang Y, Ye K, Jun G, Fritz MHY, Konkel MK, Malhotra A, Stütz AM, Shi XH, Casale FP, Chen JM, Hormozdiari F, Dayama G, Chen K, Malig M, Chaisson MJP, Walter K, Meiers S, Kashin S, Garrison E, Auton A, Lam HYK, Mu XJ, Alkan C, Antaki D, Bae T, Cerveira E, Chines P, Chong ZC, Clarke L, Dal E, Ding L, Emery S, Fan X, Gujral M, Kahveci F, Kidd JM, Kong Y, Lameijer EW, McCarthy S, Flicek P, Gibbs RA, Marth G, Mason CE, Menelaou A, Muzny DM, Nelson BJ, Noor A, Parrish NF, Pendleton M, Quitadamo A, Raeder B, Schadt EE, Romanovitch M, Schlattl A, Sebra R, Shabalin AA, Untergasser A, Walker JA, Wang M, Yu FL, Zhang C, Zhang J, Zheng-Bradley XQ, Zhou WD, Zichner T, Sebat J, Batzer MA, McCarroll SA, 1000 Genomes Project Consortium, Mills RE, Gerstein MB, Bashir A, Stegle O, Devine SE, Lee C, Eichler EE, Korbel JO. An integrated map of structural variation in 2,504 human genomes. Nature, 2015, 526(7571): 75-81.
doi: 10.1038/nature15394 |
[32] |
Korn JM, Kuruvilla FG, McCarroll SA, Wysoker A, Nemesh J, Cawley S, Hubbell E, Veitch J, Collins PJ, Darvishi K, Lee C, Nizzari MM, Gabriel SB, Purcell S, Daly MJ, Altshuler D. Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat Genet, 2008, 40(10): 1253-1260.
doi: 10.1038/ng.237 pmid: 18776909 |
[33] | Van der Auwera GA, O'Connor BD. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra. 2020: O'Reilly Media, Incorporated. |
[34] | Meire M, Ballings M, Van den Poel D. imputeMissings: impute missing values in a predictive context. 2016. |
[35] | Rustowicz R. Crop classification with multi-temporal satellite imagery. 2017. |
[36] | Breiman L, Cutler A, Liaw A, Wiener M. Package ‘randomForest’. 2018. |
[37] |
Yu GC, Smith DK, Zhu HC, Guan Y, Lam TTY. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol, 2017, 8(1): 28-36.
doi: 10.1111/2041-210X.12628 |
[38] |
Hao W, Storey JD. Extending tests of Hardy-Weinberg equilibrium to structured populations. Genetics, 2019, 213(3): 759-770.
doi: 10.1534/genetics.119.302370 |
[39] |
Pritchard JK, Przeworski M. Linkage disequilibrium in humans: models and data. Am J Hum Genet, 2001, 69(1): 1-14.
doi: 10.1086/321275 |
[40] |
Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21(2): 263-265.
pmid: 15297300 |
[41] |
Armstrong RA. When to use the Bonferroni correction. Ophthalmic Physiol Opt, 2014, 34(5): 502-508.
doi: 10.1111/opo.12131 |
[42] |
Boca SM, Rosenberg NA. Mathematical properties of Fst between admixed populations and their parental source populations. Theor Popul Biol, 2011, 80(3): 208-216.
doi: 10.1016/j.tpb.2011.05.003 pmid: 21640742 |
[43] |
Rosenberg NA, Li LM, Ward R, Pritchard JK. Informativeness of genetic markers for inference of ancestry. Am J Hum Genet, 2003, 73(6): 1402-1422.
doi: 10.1086/380416 |
[44] | Hui SB, Wang WJ. Improvement of multi-variable's redundant attributes in classification algorithm of support vector machines. Computer Engineering and Design, 2006, 27(8): 1385-138. |
惠守博, 王文杰. 支持向量机分类算法中多元变量共线性问题的改进. 计算机工程与设计, 2006, 27(8): 1385- 1388. | |
[45] | Zhao YD, Liu R, Liu YL, Xiao F, Zhang Y. Multivariate logistic regression collinearity diagnosis analysis. Chinese Journal of Health Statistics, 2000, (5): 3-5. |
赵宇东, 刘嵘, 刘延龄, 肖峰, 张扬. 多元logistic回归的共线性分析. 中国卫生统计, 2000, (5): 3-5. | |
[46] | Wang L, Tong X, Sheng MW, Qin HD, Tang QS. Review of image classification based on softmax classifier in deep learning. Navigation and Control, 2019, 18(6): 1-9+47. |
万磊, 佟鑫, 盛明伟, 秦洪德, 唐松奇. Softmax分类器深度学习图像分类方法应用综述. 导航与控制, 2019, 18(6): 1-9+47. | |
[47] |
Rigatti SJ. Random Forest. J Insur Med, 2017, 47(1): 31-39.
doi: 10.17849/insm-47-01-31-39.1 pmid: 28836909 |
[48] |
Heo J, Yoon JG, Park H, Kim YD, Nam HS, Heo JH. Machine learning-based model for prediction of outcomes in acute stroke. Stroke, 2019, 50(5): 1263-1265.
doi: 10.1161/STROKEAHA.118.024293 pmid: 30890116 |
[49] |
Che DS, Liu Q, Rasheed K, Tao XP. Decision tree and ensemble learning algorithms with their applications in bioinformatics. Adv Exp Med Biol, 2011, 696: 191-199.
doi: 10.1007/978-1-4419-7046-6_19 pmid: 21431559 |
[50] |
Connor CW. Artificial intelligence and machine learning in anesthesiology. Anesthesiology, 2019, 131(6): 1346-1359.
doi: 10.1097/ALN.0000000000002694 pmid: 30973516 |
[51] |
Pandis N. Linear regression. Am J Orthod Dentofacial Orthop, 2016, 149(3): 431-434.
doi: 10.1016/j.ajodo.2015.11.019 |
[52] |
LaValley MP. Logistic regression. Circulation, 2008, 117(18): 2395-2399.
doi: 10.1161/CIRCULATIONAHA.106.682658 pmid: 18458181 |
[53] | Huang SJ, Cai NG, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics, 2018, 15(1): 41-51. |
[54] |
Karalis G. Decision trees and applications. Adv Exp Med Biol, 2020, 1194: 239-242.
doi: 10.1007/978-3-030-32622-7_21 pmid: 32468539 |
[55] |
Hatwell J, Gaber MM, Atif Azad RM. Ada-WHIPS: explaining AdaBoost classification with applications in the health sciences. BMC Med Inform Decis Mak, 2020, 20(1): 250.
doi: 10.1186/s12911-020-01201-2 |
[56] |
Wen J, Xu Y, Li ZY, Ma ZL, Xu YR. Inter-class sparsity based discriminative least square regression. Neural Netw, 2018, 102: 36-47.
doi: 10.1016/j.neunet.2018.02.002 |
[57] |
Kloumann IM, Ugander J, Kleinberg J. Block models and personalized PageRank. Proc Natl Acad Sci USA, 2017, 114(1): 33-38.
doi: 10.1073/pnas.1611275114 |
[58] |
Jung Y, Hu JH. A k-fold averaging cross-validation procedure. J Nonparametr Stat, 2015, 27(2): 167-179.
doi: 10.1080/10485252.2015.1010532 |
[59] | Liu J, Li S, Jiang L, Zhao L, Zhao WT, Feng L, Liu HB, Ji AQ, Li CX. DNA ancestry analyzer: an automatic program for ancestry inference of unknown individuals. Life Sci Res, 2018, 22(1): 3-7+41. |
刘京, 李盛, 江丽, 赵蕾, 赵雯婷, 丰蕾, 刘海渤, 季安全, 李彩霞. 对于未知来源个体进行族群推断的自动分析系统. 生命科学研究, 2018, 22(1): 3-7+41. | |
[60] |
Ringnér M. What is principal component analysis? Nat Biotechnol, 2008, 26(3): 303-304.
doi: 10.1038/nbt0308-303 pmid: 18327243 |
[61] |
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945-959.
doi: 10.1093/genetics/155.2.945 |
[62] | Cai LJ. The technical means of forensic material evidence identification in criminal investigation cases-DNA identification technology. Legality Vision, 2018, (34): 177. |
蔡立君. 刑侦案件中法医物证鉴定的技术手段——DNA鉴定技术. 法制博览, 2018, (34): 177. | |
[63] | Jiang L, Zhao L, Liu J, Zhao WT, Ma Q, Zhao H, Ji AQ, Li CX. DNA ancestry inference assisting to have a case solved. Forensic Science and Technology, 2019, 44(4): 371-373. |
江丽, 赵蕾, 刘京, 赵雯婷, 马泉, 赵慧, 季安全, 李彩霞. DNA供者族群推断技术在案件中的应用. 刑事技术, 2019, 44(4): 371-373. | |
[64] |
Charilaou P, Battat R. Machine learning models and over-fitting considerations. World J Gastroenterol, 2022, 28(5): 605-607.
doi: 10.3748/wjg.v28.i5.605 |
[65] |
Dizaji KG, Chen W, Huang H. Deep large-scale multitask learning network for gene expression inference. J Comput Biol, 2021, 28(5): 485-500.
doi: 10.1089/cmb.2020.0438 pmid: 34014778 |
[1] | 郭晓媛, 孙昌春, 薛思瑶, 赵慧, 江丽, 李彩霞. 49AISNP:东亚北方三个族群遗传来源推断[J]. 遗传, 2021, 43(9): 880-889. |
[2] | 李茜, 王浩宇, 曹悦岩, 朱强, 舒潘寅, 侯婷芸, 王雨婷, 张霁. 微单倍型遗传标记的法医基因组学研究[J]. 遗传, 2021, 43(10): 962-971. |
[3] | 刘志勇, 乌日嘎, 李燃, 王蔷薇, 孙宏钰. 法医遗传学研究和鉴定中的伦理问题[J]. 遗传, 2021, 43(10): 994-1002. |
[4] | 胡雅丽, 戴睿, 刘永鑫, 张婧赢, 胡斌, 储成才, 袁怀波, 白洋. 水稻典型品种日本晴和IR24根系微生物组的解析[J]. 遗传, 2020, 42(5): 506-518. |
[5] | 刘杨, 孙昌春, 马咪, 王玲, 赵雯婷, 马泉, 季安全, 刘京, 李彩霞. 74-plex SNPs复合检测体系在中国人群中的族群推断研究[J]. 遗传, 2020, 42(3): 296-308. |
[6] | 张桂珊, 杨勇, 张灵敏, 戴宪华. 机器学习方法在CRISPR/Cas9系统中的应用[J]. 遗传, 2018, 40(9): 704-723. |
[7] | 赵学彤, 杨亚东, 渠鸿竹, 方向东. 组学时代下机器学习方法在临床决策支持中的应用[J]. 遗传, 2018, 40(9): 693-703. |
[8] | 彭哲也,唐紫珺,谢民主. 机器学习方法在基因交互作用探测中的研究进展[J]. 遗传, 2018, 40(3): 218-226. |
[9] | 田娇阳, 李玉春, 孔庆鹏, 张亚平. 遗传学视角下东亚人群的起源和演化[J]. 遗传, 2018, 40(10): 814-824. |
[10] | 江丽,孙启凡,马泉,赵雯婷,刘京,赵蕾,季安全,李彩霞. 27-plex SNP种族推断方法的优化及验证[J]. 遗传, 2017, 39(2): 166-173. |
[11] | 侯妍妍,应晓敏,李伍举. microRNA计算发现方法的研究进展[J]. 遗传, 2008, 30(6): 687-696. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: