遗传 ›› 2012, Vol. 34 ›› Issue (2): 145-156.doi: 10.3724/SP.J.1005.2012.00145
施季森, 王占军, 陈金慧
收稿日期:
2011-09-07
修回日期:
2011-11-02
出版日期:
2012-02-20
发布日期:
2012-02-25
通讯作者:
施季森
E-mail:jshi@njfu.edu.cn
基金资助:
国家自然科学基金重点项目(编号:30930077), 国家自然科学基金青年项目(编号:30901156), 国家林业局948引进项目(编号:2009-4-24), 江苏高校自然科学基金项目(编号:09KJA220001)和江苏省高校优势学科建设工程项目(PAPD)资助
SHI Ji-Sen, WANG Zhan-Jun, CHEN Jin-Hui
Received:
2011-09-07
Revised:
2011-11-02
Online:
2012-02-20
Published:
2012-02-25
Contact:
Shi Ji-sen
E-mail:jshi@njfu.edu.cn
摘要: 近年来, 植物全基因组测序的结果正如雨后春笋般涌现, 木本植物全基因组测序也在紧锣密鼓地展开。但由于木本植物通常基因组较大, 基因组结构较为复杂, 在测序、测序后的组装、注释、功能分析等均存在较大的困难。在基因组测序分析的经费预算方面也存在着较大的压力。因此, 有必要对这方面的研究进展及其存在问题进行分析比较, 以提高林木全基因组研究方面的效率。文章在比较分析已经发展起来的3代基因测序技术(Sanger测序法、合成测序法和单分子测序法)的基础上, 选择4种已经公布的木本植物(杨树、葡萄、番木瓜、苹果), 从全基因组测序的研究背景、测序结果及应用的研究进展和存在问题等方面进行了述评, 对未来要开展的木本植物全基因组测序前的准备工作(材料选择、遗传图谱和连锁图谱的构建、测序技术的选择), 全基因组测序结果的生物信息学分析和应用进行了讨论。
施季森,王占军,陈金慧. 木本植物全基因组测序研究进展[J]. 遗传, 2012, 34(2): 145-156.
SHI Ji-Sen, WANG Zhan-Jun, CHEN Jin-Hui. Progress on whole genome sequencing in woody plants[J]. HEREDITAS, 2012, 34(2): 145-156.
[1] Food and Agriculture Organization of the United Nations (FAO). The state of the world's forest. Food and Agriculture Organization of the United Nations, Rome, 2003, ISBN 92-5-104865- 7.[2] Jansson S, Douglas CJ. Populus: a model system for plant biology. Annu Rev Plant Biol, 2007, 58: 435-458.[3] Kelleher CT, Chiu R, Shin H, Bosdet IE, Krzywinski MI, Fjell CD, Wilkin J, Yin TM, DiFazio SP, Ali J, Asano JK, Chan S, Cloutier A, Girn N, Leach S, Lee D, Mathewson CA, Olson T, O'connor K, Prabhu AL, Smailus DE, Stott JM, Tsai M, Wye NH, Yang GS, Zhuang J, Holt RA, Putnam NH, Vrebalov J, Giovannoni JJ, Grimwood J, Schmutz J, Rokhsar D, Jones SJM, Marra MA, Tuskan GA, Bohlmann J, Ellis BE, Ritland K, Douglas CJ, Schein JE. A physical map of the highly heterozygous Populus genome: integration with the genome sequence and genetic map and analysis of haplotype variation. Plant J, 2007, 50(6): 1063-1078.[4] Sterck L, Rombauts S, Jansson S, Sterky F, Rouzé P, Van de Peer Y. EST data suggest that poplar is an ancient polyploid. New Phytol, 2005, 167(1): 165-170.[5] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408(6814): 796-815.[6] Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Rokhsar D. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313(5793): 1596- 1604.[7] Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Wincker P; French-Italian Public Consortium for Grapevine Genome Characterization. The grapevine genome sequence suggests ancestral hexap- loidization in major angiosperm phyla. Nature, 2007, 449(7161): 463-467.Ming R, Hou SB, Feng Y, Yu QY, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KLT, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen CX, Alam M. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452 (7190): 991-996. [8] Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Viola R. The genome of the domesticated apple (Malus ×domestica Borkh.). Nat Genet, 2010, 42(10): 833-839.[9] International Peach Genome Initiative (IPGI). 2010. http://www.rosaceae.org/peach/genome.[10] Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Ta-kahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu T, Toyoda A, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena JA, Wada N, Kohinata T, Atefeh A, Yuasa S, Matsunaga S, Fukui K. Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res, 2011, 18(1): 65-76.[11] International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005, 436(7052): 793-800.[12] Huang SW, Li RQ, Zhang ZH, Li L, Gu XF, Fan W, Lucas WJ, Wang XW, Xie BY, Ni PX, Ren YY, Zhu HM, Li J, Lin K, Jin WW, Fei ZJ, Li GC, Staub J, Kilian A, van der Vossen EAG, Li SG. The genome of the cucumber, Cucumis sativus L. Nat Genet, 2009, 41(12): 1275-1281.[13] Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genom Human Genet, 2008, 9(1): 387-402.[14] Kircher M, Kelso J. High-throughput DNA sequencing--concepts and limitations. BioEssays, 2010, 32(6): 524-536.[15] Munroe DJ, Harris TJR. Third-generation sequencing fireworks at Marco Island. Nat Biotechnol, 2010, 28(5): 426-428.[16] Delseny M, Han B, Hsing YI. High throughput DNA sequencing: The new sequencing revolution. Plant Sci, 2010, 179(5): 407-422.[17] Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen ZT, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Rothberg JM. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005, 437(7057): 376-380.[18] Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F, Shi T, Tripp HJ, Affourtit JP. Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science, 2008, 322(5904): 1110-1112.[19] Bonasio R, Zhang GJ, Ye CY, Mutti NS, Fang XD, Qin N, Donahue G, Yang PC, Li QY, Li C, Zhang P, Huang ZY, Berger SL, Reinberg D, Wang J, Liebig J. Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science, 2010, 329(5995): 1068- 1071.[20] Li RQ, Fan W, Tian G, Zhu HM, He L, Cai J, Huang QF, Cai QL, Li B, Bai YQ, Zhang ZH, Zhang YP, Wang W, Li J, Wei FW, Li H, Jian M, Li JW, Zhang ZL, Nielsen R, Li DW, Wang J. The sequence and de novo assembly of the giant panda genome. Nature, 2010, 463(7279): 311- 317.[21] Potato Genome Sequencing Consortium, Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J, Orjeda G, Guzman F, Torres M, Lozano R, Ponce O, Visser RG. Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475(7355): 189-195.[22] Polle A, Douglas C. The molecular physiology of poplars: paving the way for knowledge- based biomass production. Plant Biol, 2010, 12(2): 239-241.[23] Tuskan GA, DiFazio SP, Teichmann T. Poplar genomics is getting popular: the impact of the poplar genome project on tree research. Plant Biol, 2004, 6(1): 2-4.[24] Stettler RF, Heliman PE, Bradshaw HD. Biology of Populus And Its Implications for Management and Conservation. Ottawa: NRC Research Press, 1999: 1-7.[25] Yin TM, DiFazio SP, Gunter LE, Riemenschneider D, Tuskan GA. Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map. Theor Appl Genet, 2004, 109(3): 451-463.[26] Mozo T, Dewar K, Dunn P, Ecker JR, Fischer S, Kloska S, Lehrach H, Marra M, Martienssen R, Meier-Ewert S, Altmann T. A complete BAC-based physical map of the Arabidopsis thaliana genome. Nat Genet, 1999, 22(3): 271-275.[27] Schneeberger K, Weigel D. Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci, 2011, 16(5): 282-288.[28] Yin TM, Zhang XY, Huang MR, Wang MX, Zhuge Q, Tu SM, Zhu LH, Wu RL. Molecular linkage maps of the Populus genome. Genome, 2002, 45(3): 541-555.[29] Varshney RK, Nayak SN, May GD, Jackson SA. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol, 2009, 27(9): 522- 530.[30] Dinus RJ, Tuskan GA. Integration of molecular and classical genetics: a synergistic approach to tree improvement. In: Klopfenstein NB, Chun YW, Kim M-S, Ahuja MR, eds. Micropropagation, Genetic Engineering, and Molecular Biology of Populus. Fort Collins: General Technical Report RM-GTR-297, USDA Forest Service, 1997: 220-235.[31] Tuskan GA, Gunter LE, Yang ZK, Yin TM, Sewell MM, DiFazio SP. Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa. Can J Forest Res, 2004, 34(1): 85-93.[32] Woolbright SA, Difazio SP, Yin T, Martinsen GD, Zhang X, Allan GJ, Whitham TG, Keim P. A dense linkage map of hybrid cottonwood (Populus fremontii ×P. angustifolia) contributes to long-term ecological research and comparison mapping in a model forest tree. Heredity, 2008, 100(1): 59-70.[33] Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, Némorin A, Wiedemann-Merdinoglu S, Merdinoglu D, Ollat N, Decroocq S. Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theor Appl Genet, 2009, 118(7): 1261- 1278.[34] Troggio M, Malacarne G, Coppola G, Segala C, Cartwright DA, Pindo M, Stefanini M, Mank R, Moroldo M, Morgante M, Grando MS, Velasco R. A dense single-nucleotide polymorphism-based genetic linkage map of grapevine (Vitis vinifera L.) anchoring Pinot Noir bacterial artificial chromosome contigs. Genetics, 2007, 176(4): 2637-2650.[35] Ming R, Yu QY, Moore PH. Sex determination in papaya. Semin Cell Dev Biol, 2007, 18(3): 401-408.[36] Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC. Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Nat Biotechnol, 1992, 10(11): 1466-1472.[37] Liu ZY, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu QY, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature, 2004, 427(6972): 348-352.[38] Chen CX, Yu QY, Hou SB, Li YJ, Eustice M, Skelton RL, Veatch O, Herdes RE, Diebold L, Saw J, Feng Y, Qian WB, Bynum L, Wang L, Moore PH, Paull RE, Alam M, Ming R. Construction of a sequence-tagged high-density genetic map of papaya for comparative structural and evolu- tionary genomics in Brassicales. Genetics, 2007, 177(4): 2481-2491.[39] Bowers JE, Chapman BA, Rong JK, Paterson AH. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Na-ture, 2003, 422(6930): 433- 438.[40] Schranz ME, Mitchell-Olds T. Independent ancient poly-ploidy events in the sister families Brassicaceae and Cle-omaceae. Plant Cell, 2006, 18(5): 1152-1165.[41] Han YP, Gasic K, Marron B, Beever JE, Korban SS. A BAC-based physical map of the apple genome. Genomics, 2007, 89(5): 630-637.[42] Han YP, Korban SS. An overview of the apple genome through BAC end sequence analysis. Plant Mol Biol, 2008, 67(6): 581-588.[43] Han YP, Chagné D, Gasic K, Rikkerink EHA, Beever JE, Gardiner SE, Korban SS. BAC-end sequence-based SNPs and Bin mapping for rapid integration of physical and genetic maps in apple. Genomics, 2009, 93(3): 282-288.[44] Katsnelson A. DNA sequencing for the masses. Nature, 2010, doi:10.1038/news.2010.674.[45] Zakaib GD. Chip chips away at the cost of a genome. Nature, 2011, 475(7356): 278.[46] Sims PA, Greenleaf WJ, Duan HF, Xie XS. Fluorogenic DNA sequencing in PDMS microreactors. Nat Methods, 2011, 8(7): 575-580.[47] Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res, 2008, 18(5): 821-829.[48] Li RQ, Li YR, Kristiansen K, Wang J. SOAP: Short oligonucleotide alignment program. Bioinformatics, 2008, 24(5): 713-714.[49] Li RQ, Zhu HM, Ruan J, Qian WB, Fang XD, Shi ZB, Li YR, Li ST, Shan G, Kristiansen K, Li SG, Yang HM, Wang J, Wang J. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res, 2010, 20(2): 265-272.[50] Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD, Zhao YJ, Hirst M, Schein JE, Horsman DE, Connors JM, Gascoyne RD, Marra MA, Jones SJM. De novo transcriptome assembly with ABySS. Bioinformatics, 2009, 25(21): 2872-2877.[51] Hernandez D, François P, Farinelli L, Østerås M, Schrenzel J. De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res, 2008, 18(5): 802-809.[52] Chaisson MJ, Pevzner PA. Short read fragment assembly of bacterial genomes. Genome Res, 2008, 18(2): 324-330.[53] Huang XQ, Madan A. CAP3: A DNA sequence assembly program. Genome Res, 1999, 9(9): 868-877.[54] Feldmeyer B, Wheat CW, Krezdorn N, Rotter B, Pfenninger M. Short read Illumina data for the de novo assembly of a non-model snail species transcriptome (Radix balthica, Basommatophora, Pulmonata), and a comparison of assembler performance. BMC Genomics, 2011, 12(1): 317.[55] Dohm JC, Lottaz C, Borodina T, Himmelbauer H. SHARCGS, a fast and highly accurate short- read assembly algorithm for de novo genomic sequencing. Genome Res, 2007, 17(11): 1697-1706.[56] Sudbery I, Stalker J, Simpson JT, Keane T, Rust AG, Hur-les ME, Walter K, Lynch D, Teboul L, Brown SD, Li H, Ning ZM, Nadeau JH, Croniger CM, Durbin R, Adams DJ. Deep short-read sequencing of chromosome 17 from the mouse strains A/J and CAST/Ei identifies significant germline variation and candidate genes that regulate liver triglyceride levels. Genome Biol, 2009, 10(10): R112.[57] Bryant DW Jr, Wong WK, Mockler TC. QSRA: a quality-value guided de novo short read assembler. BMC Bio-informatics, 2009, 10: 69.[58] Rausch T, Koren S, Denisov G, Weese D, Emde AK, Döring A, Reinert K. A consistency-based consensus algorithm for de novo and reference-guided sequence assembly of short reads. Bioinformatics, 2009, 25(9): 1118-1124.[59] Hossain MS, Azimi N, Skiena S. Crystallizing short-read assemblies around seeds. BMC Bioinformatics, 2009, 10: S16.[60] Dayarian A, Michael TP, Sengupta MA. SOPRA: Scaffolding algorithm for paired reads via statistical optimization. BMC Bioinformatics, 2010, 11(1): 345.[61] Warren RL, Sutton GG, Jones SJM, Holt RA. Assembling millions of short DNA sequences using SSAKE. Bioinformatics, 2007, 23(4): 500-501.[62] Schmidt B, Sinha R, Beresford-Smith B, Puglisi SJ. A fast hybrid short read fragment assembly algorithm. Bioinformatics, 2009, 25(17): 2279-2280.[63] Jeck WR, Reinhardt JA, Baltrus DA, Hickenbotham MT, Magrini V, Mardis ER, Dangl JL, Jones CD. Extending assembly of short DNA sequences to handle error. Bioinformatics, 2007, 23 (21): 2942-2944.[64] Paszkiewicz K, Studholme DJ. De novo assembly of short sequence reads. Brief Bioinform, 2010, 11(5): 457-472.[65] Chen SF, Zhou RC, Huang YL, Zhang M, Yang GL, Zhong CR, Shi SH. Transcriptome sequencing of a highly salt tolerant mangrove species Sonneratia alba using Illumina platform. Mar Genomics, 2011, 4(2): 129-136.[66] Nordborg M, Weigel D. Next-generation genetics in plants. Nature, 2008, 456(7223): 720-723.[67] Ishitani M, Xiong L, Stevenson B, Zhu JK. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of ab-scisic acid- dependent and abscisic acid-independent pathways. Plant Cell, 1997, 9(11): 1935-1949. |
[1] | 梁文权,侯豫,赵存友. 精神分裂症相关单核苷酸多态性调控microRNA功能研究进展[J]. 遗传, 2019, 41(8): 677-685. |
[2] | 刘刚,孙飞舟,朱芳贤,冯海永,韩旭. 连续性纯合片段在畜禽基因组研究中的应用[J]. 遗传, 2019, 41(4): 304-317. |
[3] | 赵志达,张莉. 基因组选择在绵羊育种中的应用[J]. 遗传, 2019, 41(4): 293-303. |
[4] | 石田培,张莉. 全转录组学在畜牧业中的应用[J]. 遗传, 2019, 41(3): 193-205. |
[5] | 匡卫民, 于黎. 基因组时代线粒体基因组拼装策略及软件应用现状[J]. 遗传, 2019, 41(11): 979-993. |
[6] | 姚雅馨,喇永富,狄冉,刘秋月,胡文萍,王翔宇,储明星. 不同单细胞全基因组扩增方法的比较及MALBAC在辅助生殖中的应用[J]. 遗传, 2018, 40(8): 620-631. |
[7] | 徐纪明,胡晗,毛文轩,毛传澡. 利用重测序技术获取转基因植物T-DNA插入位点[J]. 遗传, 2018, 40(8): 676-682. |
[8] | 邓雯文,龙梅,杨盛智,邹立扣. β-内酰胺酶耐药基因blaOKP进化及其侧翼序列特征研究[J]. 遗传, 2018, 40(7): 585-592. |
[9] | 彭哲也,唐紫珺,谢民主. 机器学习方法在基因交互作用探测中的研究进展[J]. 遗传, 2018, 40(3): 218-226. |
[10] | 于军. 实现“终极版”核苷酸测序仪的技术要素[J]. 遗传, 2018, 40(11): 929-937. |
[11] | 高胜寒,禹海英,吴双阳,王森,耿佳宁,骆迎峰,胡松年. 复杂基因组测序技术研究进展[J]. 遗传, 2018, 40(11): 944-963. |
[12] | 田娇阳, 李玉春, 孔庆鹏, 张亚平. 遗传学视角下东亚人群的起源和演化[J]. 遗传, 2018, 40(10): 814-824. |
[13] | 张太奎, 苑兆和. 植物古基因组学研究进展[J]. 遗传, 2018, 40(1): 44-56. |
[14] | 杨超, 杨瑞馥, 崔玉军. 细菌全基因组关联研究的方法与应用[J]. 遗传, 2018, 40(1): 57-65. |
[15] | 王钰嫣,王子兴,胡耀达,王蕾,李宁,张彪,韩伟,姜晶梅. 全基因组关联研究通路分析方法现状[J]. 遗传, 2017, 39(8): 707-716. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: