遗传 ›› 2023, Vol. 45 ›› Issue (7): 602-616.doi: 10.16288/j.yczz.23-115
马钧1(), 樊安平2, 王武生2, 张金川2, 江晓军2, 马瑞军2, 贾社强2, 刘飞2, 雷初朝1, 黄永震1()
收稿日期:
2023-04-25
修回日期:
2023-06-11
出版日期:
2023-07-20
发布日期:
2023-06-30
通讯作者:
黄永震
E-mail:Junma96@163.com;hyzsci@nwafu.edu.cn
作者简介:
马钧,在读博士研究生,专业方向:动物遗传育种与繁殖。E-mail: 基金资助:
Jun Ma1(), Anping Fan2, Wusheng Wang2, Jinchuan Zhang2, Xiaojun Jiang2, Ruijun Ma2, Sheqiang Jia2, Fei Liu2, Chuchao Lei1, Yongzhen Huang1()
Received:
2023-04-25
Revised:
2023-06-11
Online:
2023-07-20
Published:
2023-06-30
Contact:
Yongzhen Huang
E-mail:Junma96@163.com;hyzsci@nwafu.edu.cn
Supported by:
摘要:
在畜禽资源保护中,群体遗传多样性和遗传结构是决定保种效果的重要因素。本研究采用全基因组重测序技术检测100头秦川牛(30头公牛、70头母牛)的基因组变异,通过分析群体遗传多样性、连续纯合片段(runs of homozygosity,ROH)分布特征、亲缘关系和家系结构,对秦川牛的保种效果进行了综合评估。结果显示,100头秦川牛共检测到20,968,017个高质量SNPs位点,平均最小等位基因频率为0.191±0.124,平均多态信息含量为0.279±0.131,平均观察杂合度为0.275±0.131,平均期望杂合度为0.279±0.131,表明秦川保种群遗传多样性较为丰富。秦川牛保种群体平均状态同源(identity by state,IBS)遗传距离为0.243±0.020,其中公牛为0.242±0.021,亲缘关系G矩阵结果与IBS距离矩阵结果一致,均显示秦川牛保种群部分个体间亲缘关系较近。100头秦川牛个体共检测到8258个基因组ROH,ROH总长度为9.64 GB,平均ROH长度为1.167±1.203 Mb,69.35%的ROH是长度为0.5~1 Mb的短ROH。个体平均ROH总长度为96.40 Mb。基于ROH的平均近交系数为0.039±0.039,其中30头秦川公牛的平均近交系数为0.044±0.035,表明部分公牛个体存在一定程度的近交积累。进化树结果显示,秦川牛保种群所测个体可分为8个家系,包括7个含公牛家系和1个不含公牛家系。本研究表明,秦川牛保种群的遗传多样性较为丰富,未出现较大程度近交积累,但部分个体间存在近交风险,应强化选配以确保秦川牛资源的可持续发展。
马钧, 樊安平, 王武生, 张金川, 江晓军, 马瑞军, 贾社强, 刘飞, 雷初朝, 黄永震. 全基因组重测序解析秦川牛保种群遗传多样性和遗传结构[J]. 遗传, 2023, 45(7): 602-616.
Jun Ma, Anping Fan, Wusheng Wang, Jinchuan Zhang, Xiaojun Jiang, Ruijun Ma, Sheqiang Jia, Fei Liu, Chuchao Lei, Yongzhen Huang. Analysis of genetic diversity and genetic structure of Qinchuan cattle conservation population using whole-genome resequencing[J]. Hereditas(Beijing), 2023, 45(7): 602-616.
表1
秦川牛样品采集信息"
性别 | 样本量 | 个体号 |
---|---|---|
公 | 30 | 1192M、1257M、1262M、1263M、1271M、1273M、1278M、1282M、1291M、1292M、1293M、1294M、1295M、1297M、1299M、1300M、1301M、1303M、1304M、1308M、1309M、1315M、 1318M、1320M、1321M、1324M、1325M、1327M、1328M、1329M |
母 | 70 | 1052F、1087F、1097F、1109F、1111F、1117F、1124F、1144F、1150F、1154F、1158F、1177F、1185F、1197F、1210F、1214F、1216F、1222F、1223F、1231F、1233F、1236F、1237F、1238F、 1239F、1240F、1244F、1245F、1250F、1253F、1260F、1265F、1271F、1273F、1277F、1284F、1286F、1287F、1290F、1292F、1294F、1300F、1301F、1302F、1303F、1305F、1310F、1313F、1316F、1321F、1324F、1331F、1337F、1341F、1350F、1351F、1353F、1360F、1364F、1366F、1369F、1372F、1374F、1379F、1384F、1385F、1397F、1409F、1416F、1424F |
表3
秦川牛保种群体家系划分结果"
家系名称 | 性别 | 数量 | 个体号 |
---|---|---|---|
家系A | 公 | 10 | 1282M、1291M、1292M、1293M、1295M、1297M、1299M、1300M、1304M、1309M |
母 | 10 | 1144F、1185F、1337F、1341F、1350F、1353F、1360F、1372F、1384F、1385F | |
家系B | 公 | 7 | 1262M、1263M、1273M、1308M、1315M、1320M、1321M |
母 | 17 | 1087F、1109F、1144F、1177F、1216F、1231F、1233F、1273F、1284F、1287F、1292F、1294F、1300F、1301F、1305F、1369F、1379F | |
家系C | 公 | 2 | 1257M、1324M |
母 | 8 | 1144F、1197F、1210F、1238F、1303F、1310F、1331F、1364F | |
家系D | 公 | 3 | 1329M、1271M、1278M |
母 | 14 | 1109F、1111F、1117F、1158F、1222F、1239F、1240F、1250F、1313F、1316F、1351F、1366F、1397F、1409F | |
家系E | 公 | 3 | 1318M、1325M、1329M |
母 | 5 | 1154F、1158F、1245F、1409F、1424F | |
家系F | 公 | 2 | 1327M、1328M |
母 | 3 | 1124F、1144F、1150F | |
家系G | 公 | 4 | 1192M、1294M、1301M、1303M |
母 | 8 | 1052F、1097F、1185F、1214F、1260F、1277F、1290F、1416F | |
家系H | 公 | 0 | |
母 | 12 | 1223F、1236F、1237F、1244F、1253F、1265F、1271F、1286F、1302F、1321F、1324F、1374F |
[1] | Wang B, Ma GJ, Zhang Y, Zhou FL, Cheng ZG, Hao P. External factors and improvement model of Qinchuan cattle hybrid improvement. Animal Husbandry and Veterinary Science (Electronic Edition), 2020, (21): 39-40. |
王勃, 马国际, 张岩, 周福来, 程助国, 郝鹏. 秦川牛杂交改良外部因素及改良模式. 畜牧兽医科学(电子版), 2020, (21): 39-40. | |
[2] | Yan BY.Population genomics research on Chaidamu yellow cattle[Dissertation]. Lanzhou University, 2019. |
闫碧瑶.柴达木黄牛的群体基因组学研究[学位论文]. 兰州大学, 2019. | |
[3] |
Bravo S, Larama G, Quiñones J, Paz E, Rodero E, Sepúlveda N. Genetic diversity and phylogenetic relationship among araucana creole sheep and Spanish sheep breeds. Small Ruminant Res, 2019, 172: 23-30.
doi: 10.1016/j.smallrumres.2019.01.007 |
[4] | Jia XB, Ding P, Chen SY, Zhao SK, Wang J, Lai SJ. Analysis of MC1R, MITF, TYR, TYRP1, and MLPH genes polymorphism in four rabbit breeds with different coat colors. Animals (Basel), 2021, 11(1): 81. |
[5] | Liu JX, Wei X, Deng TY, Xie R, Han JL, Du LX, Zhao FP, Wang LX. Genome-wide scan for run of homozygosity and identification of corresponding candidate genes in sheep populations. Acta Vet Zootech Sin, 2019, 50(8): 1554-1566. |
刘家鑫, 魏霞, 邓天宇, 谢锐, 韩建林, 杜立新, 赵福平, 王立贤. 绵羊全基因组ROH检测及候选基因鉴定. 畜牧兽医学报, 2019, 50(8): 1554-1566. | |
[6] |
Broman KW, Weber JL. Long homozygous chromosomal segments in reference families from the centre d'Etude du polymorphisme humain. Am J Hum Genet, 1999, 65(6): 1493-1500.
doi: 10.1086/302661 pmid: 10577902 |
[7] |
Al-Mamun HA, Clark SA, Kwan P, Gondro C. Genome- wide linkage disequilibrium and genetic diversity in five populations of Australian domestic sheep. Genet Sel Evol, 2015, 47: 90.
doi: 10.1186/s12711-015-0169-6 |
[8] |
Purfield DC, Berry DP, McParland S, Bradley DG. Runs of homozygosity and population history in cattle. BMC Genet, 2012, 13: 70.
doi: 10.1186/1471-2156-13-70 pmid: 22888858 |
[9] |
Browning SR, Browning BL. Identity by descent between distant relatives: detection and applications. Annu Rev Genet, 2012, 46: 617-633.
doi: 10.1146/annurev-genet-110711-155534 pmid: 22994355 |
[10] | Liu G, Sun FZ, Zhu FX, Feng HY, Han X. Runs of homozygosity and its application on livestock genome study. Heredity(Beijing), 2019, 41(4): 304-317. |
刘刚, 孙飞舟, 朱芳贤, 冯海永, 韩旭. 连续性纯合片段在畜禽基因组研究中的应用. 遗传, 2019, 41(4): 304-317. | |
[11] |
Marras G, Gaspa G, Sorbolini S, Dimauro C, Ajmone- Marsan P, Valentini A, Williams JL, Macciotta NPP. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Anim Genet, 2015, 46(2): 110-121.
doi: 10.1111/age.12259 pmid: 25530322 |
[12] | Ma J, Gao X, Li JY, Gao HJ, Wang ZZ, Zhang LP, Xu LY, Gao H, Li HW, Wang YH, Zhu B, Cai WT, Wang CY, Chen Y. Assessing the genetic background and selection signatures of Huaxi cattle using high-density SNP array. Animals (Basel), 2021, 11(12): 3469. |
[13] |
Van der Nest MA, Hlongwane N, Hadebe K, Chan WY, van der Merwe NA, De Vos L, Greyling B, Kooverjee BB, Soma P, Dzomba EF, Bradfield M, Muchadeyi FC. Breed ancestry, divergence, admixture, and selection patterns of the Simbra crossbreed. Front Genet, 2020, 11: 608650.
doi: 10.3389/fgene.2020.608650 |
[14] |
Zhang SJ, Yao Z, Li XM, Zhang ZJ, Liu X, Yang P, Chen NB, Xia XT, Lyu SJ, Shi QT, Wang EY, Ru BR, Jiang Y, Lei CZ, Chen H, Huang YZ. Assessing genomic diversity and signatures of selection in Pinan cattle using whole-genome sequencing data. BMC Genomics, 2022, 23(1): 460.
doi: 10.1186/s12864-022-08645-y pmid: 35729510 |
[15] | Cai CB, Zhang XL, Zhang WF, Yang Y, Gao PF, Guo XH, Li BG, Cao GQ. Evaluation of genetic structure in Mashen pigs conserved population based on SNP chip. Acta Vet Zootech Sin, 2021, 52(4): 920-931. |
蔡春波, 张雪莲, 张万峰, 杨阳, 高鹏飞, 郭晓红, 李步高, 曹果清. 运用SNP芯片评估马身猪保种群体的遗传结构. 畜牧兽医学报, 2021, 52(4): 920-931. | |
[16] | Liu B, Shen LY, Chen Y, Li Q, Liao K, Guo ZY, Zhang SH, Zhu L. Analysis of genetic structure of conservation population in Qingyu pig based on SNP chip. Acta Vet Zootech Sin, 2020, 51(2): 260-269. |
刘彬, 沈林園, 陈映, 李强, 廖坤, 郭芝忺, 张顺华, 朱砺. 基于SNP芯片分析青峪猪保种群体的遗传结构. 畜牧兽医学报, 2020, 51(2): 260-269. | |
[17] | Long X, Chen L, Wu PX, Zhang TH, Pan HM, Zhang L, Wang JY, Guo ZY, Chai J. Evaluation of the genetic structure and selection signatures in Hechuan Black pigs conserved population. Acta Vet Zootech Sin, 2023, 54(5): 1854-1867. |
龙熙, 陈力, 吴平先, 张廷焕, 潘红梅, 张亮, 王金勇, 郭宗义, 柴捷. 合川黑猪保种群遗传结构及选择信号分析. 畜牧兽医学报, 2023, 54(5): 1854-1867. | |
[18] |
Ma SL, Li XW, Li X, Xie SQ, Liu YL, Tang J, Jiang MF. Assessment of genetic structure of 3 Maiwa yak preserved populations based on genotyping-by-sequencing technology. Acta Prataculturae Sinica, 2022, 31(9): 183-194.
doi: 10.11686/cyxb2021464 |
马士龙, 李小伟, 李响, 谢书琼, 刘益丽, 唐娇, 江明锋. 基于GBS简化基因组测序评估3个麦洼牦牛保种群的遗传结构研究. 草业学报, 2022, 31(9): 183-194.
doi: 10.11686/cyxb2021464 |
|
[19] |
Shi R, Zhang Y, Wang YC, Huang T, Lu GC, Yue T, Lu ZX, Huang XX, Wei XP, Feng ST, Chen J, Kagedeer Wulan, Abulizi Ruxianguli, Abulizi Ruxianguli. The evaluation of genomic homozygosity for Xinjiang inbred population by SNP panels. Hereditas(Beijing), 2020, 42(5): 493-506.
doi: 10.16288/j.yczz.20-071 pmid: 32431300 |
师睿, 张毅, 王雅春, 黄涛, 卢国昌, 岳涛, 卢振西, 黄锡霞, 卫新璞, 冯书堂, 陈军, 乌兰·卡格德尔, 茹先古丽·阿不力孜, 努尔胡马尔·木合塔尔. 利用SNP芯片信息评估新疆近交牛基因组纯合度. 遗传, 2020, 42(5): 493-506.
doi: 10.16288/j.yczz.20-071 pmid: 32431300 |
|
[20] | Li YX, Yashengjiang Nasier, Sai Like Duman, Qian Y, Cao SX, Wang WL, Meng CH, Zhang J, Zhang JL. Evaluation of genetic diversity and genetic structure in Kirgiz sheep population cased on SNPs chip. Acta Vet Zootech Sin, 2023, 54(2): 572-583. |
李隐侠, 牙生江·那斯尔, 赛里克·都曼, 钱勇, 曹少先, 王伟列, 孟春花, 张俊, 张建丽. SNP芯片评估柯尔克孜羊群体遗传多样性和遗传结构. 畜牧兽医学报, 2023, 54(2): 572-583. | |
[21] | Ma KY, Han JT, Bai YQ, Li TT, Ma YJ. Genetic diversity analysis of Yongdeng seven goats based on specific-locus amplified fragment sequencing. Acta Vet Zootech Sin, 2023, 54(5): 1939-1950. |
马克岩, 韩金涛, 白雅琴, 李讨讨, 马友记. 基于简化基因组测序的永登七山羊遗传多样性分析. 畜牧兽医学报, 2023, 54(5): 1939-1950. | |
[22] |
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15): 2114-2120.
doi: 10.1093/bioinformatics/btu170 pmid: 24695404 |
[23] | Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: Genomics, 2013. |
[24] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009, 25(16): 2078-2079.
doi: 10.1093/bioinformatics/btp352 pmid: 19505943 |
[25] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20(9): 1297- 1303.
doi: 10.1101/gr.107524.110 pmid: 20644199 |
[26] |
Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high- throughput sequencing data. Bioinformatics, 2016, 32(2): 292-294.
doi: 10.1093/bioinformatics/btv566 pmid: 26428292 |
[27] |
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 2011, 27(21): 2987-2993.
doi: 10.1093/bioinformatics/btr509 pmid: 21903627 |
[28] |
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007, 81(3): 559-575.
doi: 10.1086/519795 pmid: 17701901 |
[29] | Zhao GY.Association and prediction of traits based on genomic homozygous segments in beef cattle[Dissertation]. Chinese Academy of Agricultural Sciences, 2021. |
赵国耀.基于肉牛基因组纯合片段的性状关联与预测[学位论文]. 中国农业科学院, 2021. | |
[30] | Liu CL, Lu D, Zhou QY, Wan MC, Hao XD, Zhang XH, Zheng RQ, Ji HY. Analysis of population genetic structure of Hang pigs by high density SNP chips. Acta Vet Zootech Sin, 2022, 53(8): 2502-2513. |
刘晨龙, 卢丹, 周泉勇, 万明春, 郝晓东, 张献贺, 郑瑞强, 季华员. 利用高密度SNP芯片分析杭猪的群体遗传结构. 畜牧兽医学报, 2022, 53(8): 2502-2513. | |
[31] |
Baum BR. PHYLIP: phylogeny inference package. Version 3.2. Joel felsenstein. The Quarterly Review of Biology, 1989, 64(4): 539-541.
doi: 10.1086/416571 |
[32] |
Xu LY, Bickhart DM, Cole JB, Schroeder SG, Song JZ, Tassell CPV, Sonstegard TS, Liu GE. Genomic signatures reveal new evidences for selection of important traits in domestic cattle. Mol Biol Evol, 2015, 32(3): 711-725.
doi: 10.1093/molbev/msu333 pmid: 25431480 |
[33] |
Edwards CE, Tessier BC, Swift JF, Bassüner B, Linan AG, Albrecht MA, Yatskievych GA. Conservation genetics of the threatened plant species Physaria filiformis (Missouri bladderpod) reveals strong genetic structure and a possible cryptic species. PLoS One, 2021, 16(3): e0247586.
doi: 10.1371/journal.pone.0247586 |
[34] |
Liu F, Qu YK, Geng C, Wang AM, Zhang JH, Li JF, Chen KJ, Liu B, Tian HY, Yang WP, Yu YB. Analysis of the population structure and genetic diversity of the red swamp crayfish (Procambarus clarkii) in China using SSR markers. Electron J Biotechnol, 2020, 47: 59-71.
doi: 10.1016/j.ejbt.2020.06.007 |
[35] |
Reed DH, Frankham R. Correlation between fitness and genetic diversity. Conserv Biol, 2003, 17(1): 230-237.
doi: 10.1046/j.1523-1739.2003.01236.x |
[36] | Eldridge MDB, King JM, Loupis AK, Spencer PBS, Taylor AC, Pope LC, Hall GP. Unprecedented low levels of genetic variation and inbreeding depression in an island population of the Black-Footed Rock-Wallaby. Conserv Biol, 1999, 13(3): 531-541. |
[37] |
Gao YH, Gautier M, Ding XD, Zhang H, Wang YC, Wang X, Faruque MO, Li JY, Ye SH, Gou X, Han JL, Lenstra JA, Zhang Y. Species composition and environmental adaptation of indigenous Chinese cattle. Sci Rep, 2017, 7(1): 16196.
doi: 10.1038/s41598-017-16438-7 pmid: 29170422 |
[38] |
Zhang WG, Gao X, Zhang Y, Zhao YM, Zhang JB, Jia YT, Zhu B, Xu LY, Zhang LP, Gao HJ, Li JY, Chen Y. Genome-wide assessment of genetic diversity and population structure insights into admixture and introgression in Chinese indigenous cattle. BMC Genet, 2018, 19(1): 114.
doi: 10.1186/s12863-018-0705-9 pmid: 30572824 |
[39] | Yuan J, Xu GQ, Zhou X, Xu SP, Li S, Li WM, Liu B. SNP chip-based monitoring of population conservation effect of Tongcheng pigs. Acta Vet Zootech Sin, 2022, 53(08): 2514-2523. |
袁娇, 徐国强, 周翔, 徐三平, 李胜, 黎望明, 刘榜. 基于SNP芯片监测通城猪的保种效果. 畜牧兽医学报, 2022, 53(08): 2514-2523. | |
[40] |
Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32(3): 314-331.
pmid: 6247908 |
[41] |
Forutan M, Ansari Mahyari S, Baes C, Melzer N, Schenkel FS, Sargolzaei M. Inbreeding and runs of homozygosity before and after genomic selection in North American Holstein cattle. BMC Genomics, 2018, 19(1): 98.
doi: 10.1186/s12864-018-4453-z pmid: 29374456 |
[42] |
Keller MC, Visscher PM, Goddard M. Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data. Genetics, 2011, 189: 237-249.
doi: 10.1534/genetics.111.130922 pmid: 21705750 |
[43] | Wang Y, Dong RL, Li X, Cui C, Yu GH. Analysis of the genetic diversity and family structure of the Licha Black pig population on Jiaodong Peninsula, Shandong Province, China. Animals (Basel), 2022, 12(8): 1045. |
[1] | 寇洁, 李严, 王鹏, 刘红, 刘佳文, 王涓, 王也, 张亮, 沈富军. 大熊猫遗传多样性评估的微卫星分型体系优化[J]. 遗传, 2022, 44(3): 253-266. |
[2] | 魏强, 奥岩, 杨漫漫, 陈涛, 韩虎, 张兴举, 王然, 夏秋菊, 姜芳芳, 李勇. 利用全基因组重测序技术鉴定五指山猪GHR突变体转基因插入位点[J]. 遗传, 2021, 43(12): 1149-1158. |
[3] | 王浩宇, 胡渝涵, 曹悦岩, 朱强, 黄雨果, 李茜, 张霁. 基于全基因组数据的AI-SNPs筛选及大陆次级区域内群体遗传结构差异研究[J]. 遗传, 2021, 43(10): 938-948. |
[4] | 徐志伟, 魏云林, 季秀玲. 假单胞菌噬菌体基因组学研究进展[J]. 遗传, 2020, 42(8): 752-759. |
[5] | 郑建敏,罗江陶,万洪深,李式昭,杨漫宇,李俊,杨恩年,蒋云,刘于斌,王相权,蒲宗君. 四川省小麦育成品种系谱分析及发展进程[J]. 遗传, 2019, 41(7): 599-610. |
[6] | 袁金红, 李俊华, 袁娇娇, 贾克利, 李书粉, 邓传良, 高武军. 基于全基因组测序的MutMap方法在正向遗传学 研究中的应用[J]. 遗传, 2017, 39(12): 1168-1177. |
[7] | 赵永欣, 李孟华, 赵要风. 中国绵羊起源、进化和遗传多样性研究进展[J]. 遗传, 2017, 39(11): 958-973. |
[8] | 胡鹏飞, 徐佳萍, 艾成, 邵秀娟, 王洪亮, 董依萌, 崔学哲, 杨福合, 邢秀梅. 利用全基因组重测序分析鹿茸重量相关基因[J]. 遗传, 2017, 39(11): 1090-1101. |
[9] | 弓弦,张超,伊利亚斯·艾萨,时瑛,杨雪唯,努尔斯曼古丽奥斯曼,关亚群,徐书华. 2型糖尿病易感候选基因在世界不同人群中的多样性比较分析[J]. 遗传, 2016, 38(6): 543-559. |
[10] | 黄益敏 夏梦颖 黄石. 遗传多样性上限假说所揭示的进化历程[J]. 遗传, 2013, 35(5): 599-606. |
[11] | 温莹 逯晓萍 任锐 米福贵 韩平安 薛春雷. 高丹草EST-SSR标记的开发及其遗传多样性[J]. 遗传, 2013, 35(2): 225-232. |
[12] | 李铎,柴志欣,姬秋梅,张成福,信金伟. 西藏牦牛微卫星DNA的遗传多样性[J]. 遗传, 2013, 35(2): 175-184. |
[13] | 马志杰,钟金城,韩建林,徐惊涛,刘仲娜,白文林. 牦牛分子遗传多样性研究进展[J]. 遗传, 2013, 35(2): 151-160. |
[14] | 傅建军,李家乐,沈玉帮,王荣泉,宣云峰,徐晓雁,陈勇. 草鱼野生群体遗传变异的微卫星分析[J]. 遗传, 2013, 35(2): 192-201. |
[15] | 王晓庆,王传超,邓琼英,李辉. 广西仫佬族Y染色体和mtDNA的遗传结构分析[J]. 遗传, 2013, 35(2): 168-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: