遗传 ›› 2012, Vol. 34 ›› Issue (5): 533-544.doi: 10.3724/SP.J.1005.2012.00533
孙敏秋1, 林鹏1, 陈芸1, 王艺磊1, 张子平2
收稿日期:
2011-12-08
修回日期:
2012-03-13
出版日期:
2012-05-20
发布日期:
2012-05-25
通讯作者:
王艺磊
E-mail:ylwang@jmu.edu.cn
基金资助:
国家自然科学基金项目(编号:30600467)和集美大学创新团队基金项目(编号:2010A001)资助
SUN Min-Qiu1, LIN Peng1, CHEN Yun1, WANG Yi-Lei1, ZHANG Zi-Ping2
Received:
2011-12-08
Revised:
2012-03-13
Online:
2012-05-20
Published:
2012-05-25
摘要: 剂量补偿效应(Dosage compensation effect)广泛存在于两性真核生物, 是基于性别决定、平衡不同性别间基因转录水平的遗传效应。MSL复合物(Male-specific lethal complex)是果蝇剂量补偿机制的核心, 它乙酰化雄性果蝇X染色体上一些特定的位点, 双倍激活X连锁活跃基因的转录, 从而弥补雄性果蝇只具有单一条X染色体的不足。目前, 已对果蝇MSL复合物各主要成分进行了结构分析, 大体了解了各组分间的相互作用位点, 并对该复合物的识别机制进行了大量的研究。与果蝇不同, 哺乳动物是通过雌性个体一条X染色体的失活来实现剂量补偿。虽然哺乳动物MSL复合物的组成已被鉴定, 但对其功能的研究还处于初步阶段。迄今为止, 对硬骨鱼类剂量补偿及MSL复合物的研究极少。文章概括了线虫、果蝇和哺乳动物各物种剂量补偿机制的异同, 综述了果蝇MSL复合物及其剂量补偿机制作用机理的研究进展, 并提出有待解决的问题, 同时利用同线性分析发现了不同鱼类msl3基因的多样性, 为今后继续研究各物种的剂量补偿机制提供基础资料和研究方向。
孙敏秋,林鹏,陈芸,王艺磊,张子平. 剂量补偿和MSL复合物研究进展[J]. 遗传, 2012, 34(5): 533-544.
SUN Min-Qiu, LIN Peng, CHEN Yun, WANG Yi-Lei, ZHANG Zi-Ping. Research advance of dosage compensation and MSL complex[J]. HEREDITAS, 2012, 34(5): 533-544.
[1] Gelbart ME, Kuroda MI. Drosophila dosage compensation: a complex voyage to the X chromosome. Development, 2009, 136(9): 1399-1410.[2] Ruiz MF, Esteban MR, Doñoro C, Goday C, Sánchez L. Evolution of dosage compensation in Diptera: the gene maleless implements dosage compensation in Drosophila (Brachycera suborder) but its homolog in Sciara (Nematocera suborder) appears to play no role in dosage compensation. Genetics, 2000, 156(4): 1853-1865.[3] Charlesworth B. The evolution of chromosomal sex determination and dosage compensation. Curr Biol, 1996, 6(2): 149-162.[4] Lucchesi JC, Kelly WG, Panning B. Chromatin remodeling in dosage compensation. Annu Rev Genet, 2005, 39: 615-651.[5] Lucchesi JC. Dosage compensation in flies and worms: the ups and downs of X-chromosome regulation. Curr Opin Genet Dev, 1998, 8(2): 179-184.[6] Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature, 1991, 349(6304): 38-44.[7] 徐丰, 金由辛. RNA与X染色体失活的后成调节. 生命的化学, 1999, 19(2): 51-53.[8] Heard E, Rougeulle C, Arnaud D, Avner P, Allis CD, Spector DL. Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell, 2001, 107(6): 727-738.[9] Pannuti A, Lucchesi JC. Recycling to remodel: evolution of dosage-compensation complexes. Curr Opin Genet Dev, 2000, 10(6): 644-650.[10] Smith ER, Cayrou C, Huang R, Lane WS, Côté J, Lucchesi JC. A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol, 2005, 25(21): 9175-9188.[11] Liu WB, Zhang Y, Miao XX, Huang YP. Identification and phylogeny of five male-specific lethal genes in the silkworm Bombyx mori. Entomol Res, 2008, 38(S1): S48-S56.[12] Angelopoulou R, Lavranos G, Manolakou P. Regulatory RNAs and chromatin modification in dosage compensation: a continuous path from flies to humans. Reprod Biol Endocrinol, 2008, 6: 12.[13] Smith ER, Pannuti A, Gu WG, Steurnagel A, Cook RG, Allis CD, Lucchesi JC. The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol, 2000, 20(1): 312-318.[14] Morales V, Regnard C, Izzo A, Vetter I, Becker PB. The MRG domain mediates the functional integration of MSL3 into the dosage compensation complex. Mol Cell Biol, 2005, 25(14): 5947-5954.[15] Fauth T, Müller-Planitz F, König C, Straub T, Becker PB. The DNA binding CXC domain of MSL2 is required for faithful targeting the dosage compensation complex to the X chromosome. Nucleic Acids Res, 2010, 38(10): 3209-3221.[16] Gelbart ME, Larschan E, Peng SY, Park PJ, Kuroda MI. Drosophila MSL complex globally acetylates H4K16 on the male X chromosome for dosage compensation. Nat Struct Mol Biol, 2009, 16(8): 825-832.[17] Scott MJ, Pan LL, Cleland SB, Knox AL, Heinrich J. MSL1 plays a central role in assembly of the MSL complex, essential for dosage compensation in Drosophila. EMBO J, 2000, 19(1): 144-155.[18] Kadlec J, Hallacli E, Lipp M, Holz H, Sanchez-Weatherby J, Cusack S, Akhtar A. Structural basis for MOF and MSL3 recruitment into the dosage compensation complex by MSL1. Nat Struct Mol Biol, 2011, 18(2): 142-150.[19] Morales V, Straub T, Neumann MF, Mengus G, Akhtar A, Becker PB. Functional integration of the histone acetyltransferase MOF into the dosage compensation complex. EMBO J, 2004, 23(11): 2258-2268.[20] Li F, Parry DAD, Scott MJ. The amino-terminal region of Drosophila MSL1 contains basic, glycine-rich, and leucine zipper-like motifs that promote X chromosome binding, self-association, and MSL2 binding, respectively. Mol Cell Biol, 2005, 25(20): 8913-8924.[21] Marín I. Evolution of chromatin-remodeling complexes: comparative genomics reveals the ancient origin of "novel" compensasome genes. J Mol Evol, 2003, 56(5): 527-539.[22] Prabhakaran M, Kelley RL. A new strategy for isolating genes controlling dosage compensation in Drosophila using a simple epigenetic mosaic eye phenotype. BMC Biol, 2010, 8(1): 80-93.[23] Chang KA, Kuroda MI. Modulation of MSL1 abundance in female Drosophila contributes to the sex specificity of dosage compensation. Genetics, 1998, 150(2): 699-709.[24] Copps K, Richman R, Lyman LM, Chang KA, Rampersad- Ammons J, Kuroda MI. Complex formation by the Drosophila MSL proteins: role of the MSL2 RING finger in protein complex assembly. EMBO J, 1998, 17(18): 5409-5417.[25] Johansson AM, Allgardsson A, Stenberg P, Larsson J. msl2 mRNA is bound by free nuclear MSL complex in Drosophila melanogaster. Nucleic Acids Res, 2011, 39(15): 6428-6439.[26] Li F, Schiemann AH, Scott MJ. Incorporation of the noncoding roX RNAs alters the chromatin-binding specificity of the Drosophila MSL1/MSL2 complex. Mol Cell Biol, 2008, 28(4): 1252-1264.[27] Bashaw GJ, Baker BS. The regulation of the Drosophila msl-2 gene reveals a function for Sex-lethal in translational control. Cell, 1997, 89(5): 789-798.[28] Gebauer F, Merendino L, Hentze MW, Valcárcel J. The Drosophila splicing regulator sex-lethal directly inhibits translation of male-specific-lethal 2 mRNA. RNA, 1998, 4(2): 142-150.[29] Lyman LM, Copps K, Rastelli L, Kelley RL, Kuroda MI. Drosophila male-specific lethal-2 protein: structure/function analysis and dependence on MSL-1 for chromosome association. Genetics, 1997, 147(4): 1743-1753.[30] Franke A, Dernburg A, Bashaw GJ, Baker BS. Evidence that MSL-mediated dosage compensation in Drosophila begins at blastoderm. Development, 1996, 122(9): 2751-2760.[31] McDowell KA, Hilfiker A, Lucchesi JC. Dosage compensation in Drosophila: the X chromosome binding of MSL-1 and MSL-2 in female embryos is prevented by the early expression of the Sxl gene. Mech Dev, 1996, 57(1): 113-119.[32] Rastelli L, Richman R, Kuroda M. The dosage compensation regulators MLE, MSL-1 and MSL-2 are interdependent since early embryogenesis in Drosophila. Mech Dev, 1995, 53(2): 223-233.[33] Jones DO, Cowell IG, Singh PB. Mammalian chromodomain proteins: their role in genome organisation and expression. Bioessays, 2000, 22(2): 124-137.[34] Buscaino A, Legube G, Akhtar A. X-chromosome targeting and dosage compensation are mediated by distinct domains in MSL-3. EMBO Rep, 2006, 7(5): 531-538.[35] Bertram MJ, Pereira-Smith OM. Conservation of the MORF4 related gene family: identification of a new chromo domain subfamily and novel protein motif. Gene, 2001, 266(1-2): 111-121.[36] Cavalli G, Paro R. Chromo-domain proteins: linking chromatin structure to epigenetic regulation. Curr Opin Cell Biol, 1998, 10(3): 354-360.[37] Akhtar A, Zink D, Becker PB. Chromodomains are protein-RNA interaction modules. Nature, 2000, 407(6802): 405-409.[38] Sural TH, Peng SY, Li B, Workman JL, Park PJ, Kuroda MI. The MSL3 chromodomain directs a key targeting step for dosage compensation of the Drosophila melanogaster X chromosome. Nat Struct Mol Biol, 2008, 15(12): 1318-1325.[39] Tominaga K, Pereira-Smith OM. The genomic organization, promoter position and expression profile of the mouse MRG15 gene. Gene, 2002, 294(1-2): 215-224.[40] Zhang P, Du JM, Sun BF, Dong XC, Xu GL, Zhou JQ, Huang QQ, Liu Q, Hao Q, Ding JP. Structure of human MRG15 chromo domain and its binding to Lys36-methy-lated histone H3. Nucleic Acids Res, 2006, 34(22): 6621-6628.[41] Tominaga K, Kirtane B, Jackson JG, Ikeno Y, Ikeda T, Hawks C, Smith JR, Matzuk MM, Pereira-Smith OM. MRG15 regulates embryonic development and cell proliferation. Mol Cell Biol, 2005, 25(8): 2924-2937.[42] Marín I, Baker BS. Origin and evolution of the regulatory gene male-specific lethal-3. Mol Biol Evol, 2000, 17(8): 1240-1250.[43] Buscaino A, Köcher T, Kind JH, Holz H, Taipale M, Wagner K, Wilm M, Akhtar A. MOF-regulated acetylation of MSL-3 in the Drosophila dosage compensation complex. Mol Cell, 2003, 11(5): 1265-1277.[44] Gu WG, Wei XR, Pannuti A, Lucchesi JC. Targeting the chromatin-remodeling MSL complex of Drosophila to its sites of action on the X chromosome requires both acetyl transferase and ATPase activities. EMBO J, 2000, 19(19): 5202-5211.[45] Akhtar A, Becker PB. Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell, 2000, 5(2): 367-375.[46] Akhtar A, Becker PB. The histone H4 acetyltransferase MOF uses a C2HC zinc finger for substrate recognition. EMBO Rep, 2001, 2(2): 113-118.[47] Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A, Akhtar A. hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol, 2005, 25(15): 6798-6810.[48] Izzo A, Regnard C, Morales V, Kremmer E, Becker PB. Structure-function analysis of the RNA helicase maleless. Nucleic Acids Res, 2008, 36(3): 950-962.[49] Mendjan S, Taipale M, Kind J, Holz H, Gebhardt P, Schelder M, Vermeulen M, Buscaino A, Duncan K, Mueller J, Wilm M, Stunnenberg HG, Saumweber H, Akhtar A. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell, 2006, 21(6): 811-823.[50] Richter L, Bone JR, Kuroda MI. RNA-dependent association of the Drosophila maleless protein with the male X chromosome. Genes Cells, 1996, 1(3): 325-336.[51] Meller VH, Rattner BP. The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J, 2002, 21(5): 1084-1091.[52] Park SW, Kuroda MI, Park Y. Regulation of histone H4 Lys16 acetylation by predicted alternative secondary structures in roX noncoding RNAs. Mol Cell Biol, 2008, 28(16): 4952-4962.[53] Stuckenholz C, Meller VH, Kuroda MI. Functional redundancy within roX1, a noncoding RNA involved in dosage compensation in Drosophila melanogaster. Genetics, 2003, 164(3): 1003-1014.[54] Franke A, Baker BS. The rox1 and rox2 RNAs are essential components of the compensasome, which mediates dosage compensation in Drosophila. Mol Cell, 1999, 4(1): 117- 122.[55] Gu W, Szauter P, Lucchesi JC. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster. Dev Genet, 1998, 22(1): 56-64.[56] Alekseyenko AA, Peng SY, Larschan E, Gorchakov AA, Lee OK, Kharchenko P, McGrath SD, Wang CI, Mardis ER, Park PJ, Kuroda MI. A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell, 2008, 134(4): 599-609.[57] Sun LV, Chen L, Greil F, Negre N, Li TR, Cavalli G, Zhao HY, van Steensel B, White KP. Protein-DNA interaction mapping using genomic tiling path microarrays in Drosophila. Proc Natl Acad Sci USA, 2003, 100(16): 9428-9433.[58] Van Steensel B, Delrow J, Bussemaker HJ. Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA binding. Proc Natl Acad Sci USA, 2003, 100(5): 2580-2585.[59] Larschan E, Alekseyenko AA, Gortchakov AA, Peng SY, Li B, Yang P, Workman JL, Park PJ, Kuroda MI. MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism. Mol Cell, 2007, 28(1): 121-133.[60] Bell O, Conrad T, Kind J, Wirbelauer C, Akhtar A, Schubeler D. Transcription-coupled methylation of histone H3 at lysine 36 regulates dosage compensation by enhancing recruitment of the MSL complex in Drosophila melanogaster. Mol Cell Biol, 2008, 28(10): 3401-3409.[61] Patalano S, Mihailovich M, Belacortu Y, Paricio N, Gebauer F. Dual sex-specific functions of Drosophila upstream of N-ras in the control of X chromosome dosage compensation. Development, 2009, 136(4): 689-698.[62] Zhang WG, Deng H, Bao XM, Lerach S, Girton J, Johansen J, Johansen KM. The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifications and heterochromatic spreading in Drosophila. Development, 2006, 133(2): 229-239.[63] Furuhashi H, Nakajima M, Hirose S. DNA supercoiling factor contributes to dosage compensation in Drosophila. Development, 2006, 133(22): 4475-4486.[64] Sanjuán R, Marín I. Tracing the origin of the compensasome: evolutionary history of DEAH helicase and MYST acetyltransferase gene families. Mol Biol Evol, 2001, 18(3): 330-343.[65] Moore SA, Ferhatoglu Y, Jia YH, Al-Jiab RA, Scott MJ. Structural and biochemical studies on the chromo-barrel domain of male specific lethal 3 (MSL3) reveal a binding preference for mono-or dimethyllysine 20 on Histone H4. J Biol Chem, 2010, 285(52): 40879-40890.[66] Wu L, Zee BM, Wang Y, Garcia BA, Dou Y. The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation. Mol Cell, 2011, 43(1): 132-144.[67] Morra R, Yokoyama R, Ling H, Lucchesi JC. Role of the ATPase/helicase maleless (MLE) in the assembly, targeting, spreading and function of the male-specific lethal (MSL) complex of Drosophila. Epigenetics Chromatin, 2011, 4(6): 1-13.[68] Ercan S, Dick LL, Lieb JD. The C. elegans dosage compensation complex propagates dynamically and independently of X chromosome sequence. Curr Biol, 2009, 19(21): 1777-1787.[69] Georgiev P, Chlamydas S, Akhtar A. Drosophila dosage compensation: Males are from Mars, females are from Venus. Fly, 2011, 5(2): 147-154.[70] Peña AAN, Tominaga K, Pereira-Smith OM. MRG15 activates the cdc2 promoter via histone acetylation in human cells. Exp Cell Res, 2011, 317(11): 1534-1540.[71] Dmitriev RI, Pestov NB, Korneenko TV, Gerasimova AV, Zhao H, Modyanov NN, Kostina MB, Shakhparonov MI. Tissue specificity of alternative splicing of transcripts encoding hampin, a new mouse protein homologous to the Drosophila MSL-1 Protein. Russ J Bioorg Chem, 2005, 31(4): 325-331.[72] Dmitriev RI, Korneenko TV, Bessonov AA, Shakhparonov MI, Modyanov NN, Pestov NB. Characterization of hampin/MSL1 as a node in the nuclear interactome. Biochem Biophys Res Commun, 2007, 355(4): 1051-1057. |
[1] | 王珏, 黄娟, 许蕊. 利用CRISPR/Cas9和piggyBac实现果蝇基因组无缝编辑[J]. 遗传, 2019, 41(5): 422-429. |
[2] | 唐浚博, 曹浩伟, 许蕊, 张丹丹, 黄娟. 果蝇睾丸基因敲除突变体的构建及表型分析[J]. 遗传, 2018, 40(6): 478-487. |
[3] | 李恩惠,赵欣,张策,刘威. 脆性X智力低下蛋白参与非编码RNA通路的研究进展[J]. 遗传, 2018, 40(2): 87-94. |
[4] | 孙书国, 吴世安, 张雷. Hippo信号通路在果蝇遗传学研究中的发现与扩展[J]. 遗传, 2017, 39(7): 537-545. |
[5] | 苏方, 黄宗靓, 郭雅文, 焦仁杰, 李孜, 陈建明, 刘继勇. 从随机突变到精确编辑:果蝇基因组编辑技术的发展及演化[J]. 遗传, 2016, 38(1): 17-27. |
[6] | 李刚, 陈凡国. 果蝇唾腺多线染色体研究进展及其在遗传学教学中的应用[J]. 遗传, 2015, 37(6): 605-612. |
[7] | 霍桂桃, 吕建军, 屈哲, 林志, 张頔, 杨艳伟, 李波. 果蝇在肿瘤学研究中的优势及应用前景[J]. 遗传, 2014, 36(1): 30-40. |
[8] | 张柿平,薛雷. 黑腹果蝇细胞谱系分析方法进展[J]. 遗传, 2012, 34(7): 819-828. |
[9] | 郭欣欣,叶海燕,张敏. 果蝇DNA甲基化研究进展[J]. 遗传, 2011, 33(7): 713-719. |
[10] | 金丽华,齐卓. 果蝇spen蛋白的抗体制备、组织特异性表达及功能分析[J]. 遗传, 2011, 33(11): 1239-1244. |
[11] | 张玉,郑增长,葛军,张鸿雁,黄延旺,宋红生. 果蝇早老素基因的研究进展[J]. 遗传, 2011, 33(11): 1164-1170. |
[12] | 李莉,杨杨,薛雷. Pax基因家族在果蝇发育过程中的调控作用[J]. 遗传, 2010, 32(2): 115-121. |
[13] | 阎辉,邓学梅,吴常信. 黑腹果蝇3号染色体裂翅平衡致死位点的发现及2号、3号染色体裂卷翅双平衡染色体的建立[J]. 遗传, 2010, 32(10): 1051-1056. |
[14] | 柴春利,鲁成. 从形态学不同到基因水平差异: 家蚕与果蝇早期胚胎发育比较[J]. 遗传, 2006, 28(9): 1173-1179. |
[15] | 张文燕,张菁,钱远槐,曾庆韬. 黑腹果蝇种组五种核型的报道[J]. 遗传, 2006, 28(5): 545-550. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: