[1] Singh K, Foley RC, Onate-Sanchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol, 2002, 5(5): 430-436.[2] Olsen AN, Ernst HA, Leggio LL, Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci, 2005, 10(2): 79-87.[3] Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, 9(6): 841-857.[4] Duval M, Hsieh TF, Kim SY, Thomas TL. Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol, 2002, 50(2): 237-248.[5] Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res, 2003, 10(6): 239-247.[6] Ernst HA, Olsen AN, Skriver K, Larsen S, Leggio LL. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep, 2004, 5(3): 297-303.[7] Yamasaki K, Kigawa T, Inoue M, Watanabe S, Tateno M, Shinozaki K, Yokoyama S. Structures and evolutionary origins of plant specific transcription factor DNA-binding domains. Plant Physiol Biochem, 2008, 46(3): 394-401.[8] Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S. Genome-wide analysis of NAC transcription factor family in rice. Gene, 2010, 465(1-2): 30-44.[9] Rushton PJ, Bokowiec MT, Han SC, Zhang HB, Brannock JF, Chen XF, Laudeman TW, Timko MP. Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant Physiol, 2008, 147(1): 280-295.[10] Le DT, Nisjiyama R, Watanabe Y, Mochida K, Yamaquchi-Shinozaki K, Shinozaki K, Tran LS. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res, 2011, 18(4): 263-276.[11] Fang YJ, You J, Xie K, Xie WB, Xiong LZ. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics, 2008, 280(6): 547-563.[12] Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH, Zhang QF, Xiong LZ. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103(35): 12987-12992.[13] Nakashima K, Tran L P, Nguyen D V, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 2007, 51(4): 617-630.[14] Hu HH, You J, Fang YJ, Zhu XY, Qi ZY, Xiong LZ. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol, 2008, 67(1-2): 169-181., 2010, 153(1): 185-197.[15] Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi S K, Nakashima K. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics, 2010, 284(3): 173-183.[16] Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Choi DY, Kim M, Reuzeau C, Kim JK. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under ?eld drought conditions. Plant Physiol[17] Zheng XN, Zhen B, Lu GJ, Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun, 2009, 379(4): 985-989.[18] Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC. A novel drought-inducible gene, ATAF1, en-codes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol, 2007, 63(2): 289-305.[19] Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C, Xie Q. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res, 2009, 19(11): 1279-1290.[20] Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi- Shinozaki K. Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress1promoter. Plant Cell, 2004, 16(9): 2481-2498.[21] Tyagi AK, Kapoor S, Khurana JP, Ray S. Expression data for stress treatment in rice seedlings. Rice Array database (http: //www. ricearray. org), 2007, GSE6901.[22] Jiang YQ, Deyholos MK. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol, 2006, 6: 25.[23] Tang YM, Liu MY, Gao SQ, Zhang Z, Zhao X, Zhao CP, Zhang FT, Chen XP. Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol Plant, 2012, 114(3): 210-224.[24] Mao XG, Zhang HY, Qian XY, Li A, Zhao GY, Jing RL. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot, 2012, 63(8): 2933-2946.[25] Tran LS, Quach TN, Guttikonda SK, Aldrich DL, Kumar R, Neelakandan A, Valliyodan B, Nguyen HT. Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Genet Genomics, 2009, 281(6): 647-664.[26] Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K. Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta, 2009, 229(5): 1065-1075.[27] Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-shinozaki K, Shinozaki K. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J, 2004, 39(6): 863-876.[28] Yoo SY, Kim Y, Kim SY, Lee JS, Ahn JH. Control of flowering time and cold response by a NAC-domain protein in Arabidopsis. PLoS One, 2007, 2(7): e642.[29] Christianson JA, Wilson IW, Llewellyn DJ, Dennis ES. The low-oxygen-induced NAC domain transcription factor ANAC102 affects viability of Arabidopsis seeds following low-oxygen treatment. Plant Physiol, 2009, 149(4): 1724-1738.[30] Lin RM, Zhao WS, Meng XB, Wang M, Peng YL. Rice gene OsNAC19 encodes a novel NAC-domain tran-scription factor and responds to infection by Magnaporthe grisea. Plant Sci, 2007, 172(1): 120-130.[31] Balzergue S, Morel J, Martin-Magnetite ML. Identification of rice genes differentially expressed upon virulent infection by Magnaporthe grisea. Rice Array database (http: //www. ricearray. org), 2007, GSE7256.[32] Zhang X, Wu Z, Xie L, Lin Q, Xie L. Comparative transcriptional profiling of two contrasting rice genotypes response to rice stripe virus infection. Rice Array database (http: //www. ricearray. org), 2008, GSE11025.[33] Collinge M, Boller T. Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol, 2001, 46(5): 521-529.[34] Oh SK, Lee S, Yu S H, Choi D. Expression of a novel NAC domain-containing transcription factor (CaNAC1) is preferentially associated with in-compatible interactions between chili pepper and pathogens. Planta, 2005, 222(5): 876-887.[35] Xia N, Zhang G, Liu XY, Deng L, Cai GL, Zhang Y, Wang XJ, Zhao JZ, Huang LL, Kang ZS. Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol Biol Rep, 2010, 37(8): 3703-3712.[36] Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant M R, Rung JH, Collinge DB, Lyngkjaer MF. Transcriptional regulation by an NAC (NAM-ATAF1, 2-CUC2) transcription factor attenuates ABA signaling for efficient basal defense towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J, 2008, 56(6): 867-880.[37] Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, Hansen M, Joehnk N, Lyngkjaer MF, Collinge DB. The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol Biol, 2007, 65(1-2): 137-150.[38] Yoshii M, Shimizu T, Yamazaki M, Higashi T, Miyao A, Hirochika H, Omura T. Disruption of a novel gene for a NAC-domain protein in rice confers resistance to Rice dwarf virus. Plant J, 2009, 57(4): 615-625.[39] Yoshii M, Yamazaki M, Rakwal R, Kishi-Kaboshi M, Miyao A, Hirochika H. The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling. Plant J, 2010, 61(5): 804-815.[40] Ren T, Qu F, Morris TJ. HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell, 2000, 12(10): 1917-1926.[41] Xie Q, Sanz-Burgos AP, Guo H, García JA, Gutiérrez C. GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol, 1999, 39(4): 647-656.[42] Selth LA, Dogra SC, Rasheed MS, Healy H, Randles JW, Rezaian MA. A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell, 2005, 17(1): 311-325.[43] Wang XE, Basnayake BM, Zhang HJ, Li GJ, Li W, Virk N, Menqiste T, Song FM. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant-Microbe Interact, 2009, 22(10): 1227-1238.[44] Delessert C, Kazan K, Wilsom LW, Straetend DVD, Manners J, Dennis E S, Dolferus R. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J, 2005, 43(5): 745-757.[45] Bu QY, Jiang HL, Li CB, Zhai QZ, Zhang J, Wu XY, Sun JQ, Xie Q, Li CY. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res, 2008, 18(7): 756-767.[46] Kaneda T, Fujiwara S, Takai R, Takayama S, Isogai A, Che FS. Identification of genes involved in induction of plant hypersensitive cell death. Plant Biotech, 2007, 24(2): 191-200.[47] Kaneda T, Taga Y, Takai R, Wano M, Matsui H, Takayama S, Isoga A, Che FS. The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death. EMBO J, 2009, 28(7): 926-936.[48] Cuperus JT, Fahlgren N, Carrington JC. Evolution and functional diversification of MIRNA genes. Cell, 2011, 23(2): 431-442.[49] Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets. Cell, 2002, 110(4): 513-520.[50] Mallory AC, Dugas DV, Bartel DP, Bartel B. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol, 2004, 14(12): 1035-1046.[51] Guo HS, Xie Q, Fei JF, Chua NH. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell, 2005, 17(5): 1376-1386.[52] Laufs P, Peaucelle A, Morin H, Traas J. MicroRNA regu-lation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 2004, 131(17): 4311-4322.[53] Xie Q, Guo HS, Dallman G, Fang SY, Welissman AM, Chua NH. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature, 2002, 419(6903): 167-170.[54] Tran LS, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J, 2007, 49(1): 46-63.[55] Mitsuda N, Matsui K, Ikeda M, Nakata M, Oshima Y, Nagatoshi Y, Ohme-Takagi M. CRES-T, an effective gene silencing system utilizing chimeric repressors. Methods Mol Biol, 2011, 754(3): 87-105. |