遗传 ›› 2015, Vol. 37 ›› Issue (6): 554-560.doi: 10.16288/j.yczz.15-020
龚淑敏, 丁艳菲, 朱诚
收稿日期:
2015-01-08
修回日期:
2015-03-18
出版日期:
2015-06-20
发布日期:
2015-05-12
通讯作者:
朱诚,博士,教授,研究方向:植物逆境生理与分子生物学。E-mail: pzhch@cjlu.edu.cn
作者简介:
龚淑敏,在读硕士研究生,专业方向:植物逆境生理与分子生物学。E-mail: gongshumin1029@126.com丁艳菲,副教授,研究方向:植物逆境生理与分子生物学。E-mail: dingyanfei1984@126.com龚淑敏和丁艳菲为并列第一作者。
基金资助:
Shumin Gong, Yanfei Ding, Cheng Zhu
Received:
2015-01-08
Revised:
2015-03-18
Online:
2015-06-20
Published:
2015-05-12
摘要: MicroRNA(miRNA)是一类小分子非编码RNA,通过降解靶基因途径在转录后水平调控基因表达,参与植物生长、发育以及逆境胁迫应答等多种细胞代谢活动。种子是植物生长的基础要素,是农业生产的重要资料。与种子发育相关的miRNA已在多种植物中得到鉴定。文章综述了参与植物种子发育过程的miRNA及其在种子发育中的具体调控机制,旨在为利用miRNA提高种子遗传特性提供研究思路。
龚淑敏, 丁艳菲, 朱诚. miRNA在植物种子发育过程中的作用[J]. 遗传, 2015, 37(6): 554-560.
Shumin Gong, Yanfei Ding, Cheng Zhu. Role of miRNA in plant seed development[J]. HEREDITAS(Beijing), 2015, 37(6): 554-560.
[1] Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell , 2004, 116(2): 281-297. [2] Zamore PD, Haley B. Ribo-gnome: The big world of small RNAs. Science , 2005, 309(5740): 1519-1524. [3] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 . Cell , 1993, 75(5): 843-854. [4] Park W, Li JJ, Song RT, Messing J, Chen XM. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana . Curr Biol , 2002, 12(17): 1484-1495. [5] Llave C, Kasschau KD, Rector MA, Carrington JC. Endogenous and silencing-associated small RNAs in plants. Plant Cell , 2002, 14(7): 1605-1619. [6] Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol , 2006, 57: 19-53. [7] Teotia S, Tang GL. To bloom or not to bloom: role of MicroRNAs in plant flowering. Mol Plant , 2015, 8(3): 359-377. [8] Khraiwesh B, Zhu JK, Zhu JH. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta , 2012, 1819(2): 137-148. [9] Jia L, Zhang DY, Qi XW, Ma B, Xiang ZH, He NJ. Identification of the conserved and novel miRNAs in mulberry by high-throughput sequencing. PLoS One , 2014, 9(8): e104409. [10] Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev , 2002, 16(13): 1616-1626. [11] Xie ZX, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC. Expression of Arabidopsis MIRNA genes. Plant Physiol , 2005, 138(4): 2145-2154. [12] 魏强, 梁永宏, 李广林. 植物miRNA的进化. 遗传, 2003, 35(3): 315-323. [13] Baranauskė S, Mickutė M, Plotnikova A, Finke A, Venclovas Č, Klimašauskas S, Vilkaitis G. Functional mapping of the plant small RNA methyltransferase: HEN1 physically interacts with HYL1 and DICER-LIKE 1 proteins. Nucleic Acids Res , 2015, 43(5): 2802-2812. [14] Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS. HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development , 2003, 130(8): 1493-1504. [15] Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS. Nuclear processing and export of microRNAs in Arabidopsis . Proc Natl Acad Sci USA , 2005, 102(10): 3691-3696. [16] Xie M, Zhang SX, Yu B. microRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci , 2015, 72(1): 87-99. [17] Bonnet E, Van de Peer Y, Rouzé P. The small RNA world of plants. New Phytol , 2006, 171(3): 451-468. [18] Khan Y, Yadav A, Bonthala VS, Muthamilarasan M, Yadav CB, Prasad M. Comprehensive genome-wide identification and expression profiling of foxtail millet [ Setaria italica (L.)] miRNAs in response to abiotic stress and development of miRNA database. Plant Cell , Tissue and Organ Culture (PCTOC) , 2014, 118(2): 279-292. [19] Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans . Nature , 2000, 403(6772): 901-906. [20] Ding YF, Tao YL, Zhu C. Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot , 2013, 64(11): 3077-3086. [21] Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science , 2003, 301(5631): 336-338. [22] Zhang BH. MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot , 2015, 66(7): 1749-1761. [23] Körbes AP, Machado RD, Guzman F, Almerão MP, de Oliveira LFV, Loss-Morais G, Turchetto-Zolet AC, Cagliari A, Maraschin FS, Margis-Pinheiro M, Margis R. Identifying conserved and novel micrornas in developing seeds of Brassica napus using deep sequencing. PLoS One , 2012, 7(11): e50663. [24] Zhao YT, Wang M, Fu SX, Yang WC, Qi CK, Wang X J. Small RNA Profiling in Two Brassica napus Cultivars Identifies MicroRNAs with Oil Production-and Development-Correlated Expression and New Small RNA Classes. Plant Physiol , 2012, 158(2): 813-823. [25] Xue LJ, Zhang JJ, Xue HW. Characterization and expression profiles of miRNAs in rice seeds. Nucleic Acids Res , 2009, 37(3): 916-930. [26] Kang MM, Zhao Q, Zhu DY, Yu JJ. Characterization of microRNAs expression during maize seed development. BMC Genomics , 2012, 13: 360. [27] Han R, Jian C, Lv JY, Yan Y, Chi Q, Li ZJ, Wang Q, Zhang J, Liu XL, Zhao HX. Identification and characterization of microRNAs in the flag leaf and developing seed of wheat ( Triticum aestivum L.) . BMC Genomics , 2014, 15: 289. [28] Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets. Cell , 2002, 110(4): 513-520. [29] Sunkar R, Chinnusamy V, Zhu JH, Zhu JK. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci , 2007, 12(7): 301-309. [30] Mitsuda N, Ohme-Takagi M. Functional analysis of transcription factors in Arabidopsis . Plant Cell Physiol , 2009, 50(7): 1232-1248. [31] 朱诚. 植物生物学. 北京: 北京师范大学出版社, 2012: 254-258. [32] Li DT, Wang LW, Liu X, Cui DZ, Chen TT, Zhang H, Jiang C, Xu CY, Li P, Li S, Zhao L, Chen HB. Deep sequencing of maize small RNAs reveals a diverse set of microRNA in dry and imbibed seeds. PLoS One , 2013, 8(1): e55107. [33] Finkelstein R, Reeves W, Ariizumi T, Steber C. Molecular aspects of seed dormancy. Annu Rev Plant Biol , 2008, 59: 387-415. [34] Yang JC, Zhang JH, Wang ZQ, Liu K, Wang P. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. J Exp Bot , 2006, 57(1): 149-160. [35] Zhang ZX, Chen J, Lin SS, Li Z, Cheng RH, Fang CX, Chen HF, Lin WX. Proteomic and phosphoproteomic determination of ABA's effects on grain-filling of Oryza sativa L. inferior spikelets. Plant Sci , 2012, 185-186: 259-273. [36] Reyes JL, Chua NH. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J , 2007, 49(4): 592-606. [37] Peng T, Sun HZ, Qiao MM, Zhao YF, Du YX, Zhang J, Li JZ, Tang GL, Zhao QZ. Differentially expressed microRNA cohorts in seed development may contribute to poor grain filling of inferior spikelets in rice. BMC Plant Biol , 2014, 14: 196. [38] Li WX, Oono Y, Zhu JH, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK. The Arabidopsis NF-YA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell , 2008, 20(8): 2238-2251. [39] Mu JY, Tan HL, Hong SL, Liang Y, Zuo JR. Arabidopsis transcription factor genes NF-YA1 , 5 , 6 and 9 play redundant roles in male gametogenesis, embryogenesis, and seed development. Mol Plant , 2013, 6(1): 188-201. [40] Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development , 2006, 133(2): 251-261. [41] Yang JH, Han SJ, Yoon EK, Lee WS. Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res , 2006, 34(6): 1892-1899. [42] Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress induced miRNA. Mol Cell , 2004, 14(6): 787-799. [43] Yi R, Zhu ZX, Hu JH, Qian Q, Dai JC, Ding Y. Identification and expression analysis of microRNAs at the grain filling stage in rice( Oryza sativa L.) via deep sequencing. PLoS One , 2013, 8(3): e57863. [44] Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science , 2006, 314(5803): 1298-1301. [45] Zhang YC, Yu Y, Wang CY, Li ZY, Liu Q, Xu J, Liao JY, Wang XJ, Qu LH, Chen F, Xin P, Yan C, Chu J, Li HQ, Chen YQ. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol , 2013, 31(9): 848-852. [46] 马圣运. os-miR408的表达模式及其在水稻种子发育中的功能[学位论文]. 杭州: 浙江大学, 2012. [47] Sun GL. MicroRNAs and their diverse functions in plants. Plant Mol Biol , 2011, 80(1): 17-36. [48] Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis . Plant Cell , 2004, 16(8), 2001-2019. [49] Liu B, Li PC, Li X, Liu CY, Cao SY, Chu CC, Cao XF. Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol , 2005, 139(1): 296-305. [50] Song QX, Liu YF, Hu XY, Zhang WK, Ma B, Chen SY, Zhang JS. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol , 2011, 11: 5. [51] Pignocchi C, Kiddle G, Hernández I, Foster SJ, Asensi A, Taybi T, Barnes J, Foyer CH. Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiol , 2006, 141(2): 423-435. [52] Potters G, Horemans N, Caubergs RJ, Asard H. Ascorbate and dehydroascorbate influence cell cycle progression in a tobacco cell suspension. Plant Physiol , 2000, 124(1): 17-20. [53] Zhang LF, Chia JM, Kumari S, Stein JC, Liu ZJ, Narechania A, Maher CA, Guill K, McMullen MD, Ware D. A genome-wide characterization of microRNA genes in maize. PLoS Genet , 2009, 5(11): e1000716. [54] Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F. bZIP transcription factors in Arabidopsis . Trends Plant Sci , 2002, 7(3): 106-111. [55] Hawker NP, Bowman JL. Roles for class III HD-Zip and KANADI genes in Arabidopsis root development. Plant Physiol , 2004, 135(4): 2261-2270. [56] Nodine MD, Bartel DP. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev , 2010, 24(23): 2678-2692. [57] Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D. Control of leaf morphogenesis by microRNAs. Nature , 2003, 425(6955): 257-263. [58] Wang SK, Wu K, Yuan QB, Liu XY, Liu B, Lin XY, Zeng RZ, Zhu HT, Dong GJ, Qian Q, Zhang GQ, Fu XD. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet , 2012, 44(8): 950-954. [59] Wang CY, Zhang SC, Yu Y, Luo YC, Liu Q, Ju CL, Zhang YC, Qu LH, Lucas WJ, Wang XJ, Chen YQ. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol J , 2014, 12(8): 1132-1142. [60] Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol , 2007, 143(4): 1467-1483. [61] Galli V, Guzman F, de Oliveira LFV, Loss-Morais G, Körbes AP, Silva SDA, Margis-Pinheiro MMAN, Margis R. Identifying MicroRNAs and Transcript Targets in Jatropha Seeds. PLoS One , 2014, 9(2): e83727. [62] Zhang H, Li HW, Yuan LM, Wang ZQ, Yang JC, Zhang JH. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. J Exp Bot , 2012, 63(1): 215-227. [63] Peng T, Sun HZ, Du YX, Zhang J, Li JZ, Liu YX, Zhao YF, Zhao QZ. Characterization and expression patterns of microRNAs involved in rice grain filling. PLoS One , 2013, 8(1): e54148. [64] Siefers N, Dang KK, Kumimoto RW, Bynum WE, Tayrose G, Holt BF. Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. Plant Physiol , 2009, 149(2): 625-641. [65] Schmidt R, Stransky H, Koch W. The amino acid permease AAP8 is important for early seed development in Arabidopsis thaliana . Planta , 2007, 226(4): 805-813. [66] Mallory AC, Bartel DP, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell , 2005, 17(5): 1360-1375. [67] 成海兰. miRNA与水稻种子活力的相关性研究[学位论文]. 长沙: 湖南师范大学, 2011. |
[1] | 姜义圣,许执恒. 脑发育疾病及发病机制[J]. 遗传, 2019, 41(9): 801-815. |
[2] | 李芳,黄青芸,刘斯佳,郭忠信,熊欣欣,桂林,束会娟,黄绍明,谭国鹤,刘媛媛. Bmal1对小鼠胚胎期皮层神经元放射状迁移和轴突投射的影响[J]. 遗传, 2019, 41(6): 524-533. |
[3] | 于好强,孙福艾,冯文奇,路风中,李晚忱,付凤玲. 转录因子BES1/BZR1调控植物生长发育及抗逆性[J]. 遗传, 2019, 41(3): 206-214. |
[4] | 杨鑫宇,贾振伟. 颗粒细胞EGF类因子信号通路在调控卵母细胞成熟和发育中的作用[J]. 遗传, 2019, 41(2): 137-145. |
[5] | 饶琳, 孟飞龙, 房冉, 蔡晨依, 赵小立. MicroRNA调控耳蜗毛细胞发育的分子机制[J]. 遗传, 2019, 41(11): 994-1008. |
[6] | 胡伟娟, 凌宏清, 傅向东. 植物表型组学研究平台建设及技术应用[J]. 遗传, 2019, 41(11): 1060-1066. |
[7] | 夏蒙蒙,申雪沂,牛长敏,夏静,孙红亚,郑英. MicroRNA参与调控睾丸支持细胞的增殖与粘附功能[J]. 遗传, 2018, 40(9): 724-732. |
[8] | 徐纪明,胡晗,毛文轩,毛传澡. 利用重测序技术获取转基因植物T-DNA插入位点[J]. 遗传, 2018, 40(8): 676-682. |
[9] | 杨志, 姚俊, 曹新. FGF信号通路在内耳发育调控和毛细胞再生中的作用[J]. 遗传, 2018, 40(7): 515-524. |
[10] | 刘海龙, 谌阳, 高杨, 周玲, 韩晓松, 赵长志, 杨高娟, 陈毅龙, 杨慧, 谢胜松. 靶向miRNA前体不同类型sgRNA的丰度及特异性评估[J]. 遗传, 2018, 40(7): 561-571. |
[11] | 陈建民. 植物遗传学中的世代及符号应用的建议[J]. 遗传, 2018, 40(6): 508-514. |
[12] | 骆甲,王型力,孙志超,吴迪,张玮,王正加. 植物环状RNA研究进展[J]. 遗传, 2018, 40(6): 467-477. |
[13] | 周瑞,王以鑫,龙科任,蒋岸岸,金龙. LncRNA调控骨骼肌发育的分子机制及其在家养动物中的研究进展[J]. 遗传, 2018, 40(4): 292-304. |
[14] | 肖娟, 王讯, 罗毅, 李晓开, 李学伟. 附睾小体功能蛋白及sRNA研究进展[J]. 遗传, 2018, 40(3): 197-206. |
[15] | 朱亚男, 敖英, 李斌, 万阳, 汪晖. 足细胞发育异常及相关肾脏疾病研究进展[J]. 遗传, 2018, 40(2): 116-125. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: