遗传 ›› 2013, Vol. 35 ›› Issue (8): 971-982.doi: 10.3724/SP.J.1005.2013.00971
张国斌1, 张喜贤3, 王云月1, 杨红玉2
收稿日期:
2013-03-26
修回日期:
2013-05-13
出版日期:
2013-08-20
发布日期:
2013-08-25
通讯作者:
王云月
E-mail:wangyykm@gmail.com
基金资助:
国家自然科学基金项目(编号:31260062, 30860121)和昆明学院科研项目(编号:YJL11017)资助
ZHANG Guo-Bin1, ZHANG Xi-Xian3, WANG Yun-Yue1, YANG Hong-Yu2
Received:
2013-03-26
Revised:
2013-05-13
Online:
2013-08-20
Published:
2013-08-25
摘要:
病原菌的侵染激发植物大量防御响应基因的表达, 其中转录因子在协调庞大的抗病防御网络中发挥重要作用。灰葡萄孢菌(Botrytis cinerea)是最具破坏力的死体营养型病原真菌之一, 在农业生产上造成严重的经济损失。文章综述了ERF(Ethylene response factors)、WRKY、MYB等家族中参与灰霉病防御反应的转录因子的功能研究进展。转录因子通过复杂的mRNA或蛋白水平的互作方式构成了精细的调控网络, 以激活下游防卫基因的表达, 从而诱导抗病反应。一部分转录因子是协调不同激素信号通路交叉响应的重要节点和调节器, 将植物抵御不同类型病原菌的分子机制联系起来。对这类转录因子的研究将为研究植物其他病原菌防御机制提供线索, 另外深入理解抗病机制将有助于研究者在作物改良和保护中更高效地利用抗病基因。
张国斌 张喜贤 王云月 杨红玉. 拟南芥灰霉病抗性相关转录因子[J]. 遗传, 2013, 35(8): 971-982.
ZHANG Guo-Bin ZHANG Xi-Xian WANG Yun-Yue YANG Hong-Yu. Transcription factors in resistance against pathogen Botrytis cinerea in Arabidopsis[J]. HEREDITAS, 2013, 35(8): 971-982.
[1] Hammond-Kosack KE, Parker JE. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol, 2003, 14(2): 177-193. [2] Zhang Y, Lubberstedt T, Xu ML. The genetic and molecular basis of plant resistance to pathogens. J Genet Genomics, 2013, 40(1): 23-35. [3] Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier JM, Quévillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Collémare J, Cotton P, Danchin EG, Da Silva C, Gautier A, Giraud C, Giraud T, Gonzalez C, Grossetete S, Güldener U, Henrissat B, Howlett BJ, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Neuvéglise C, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Ségurens B, Sexton A, Silva E, Sirven C, Soanes DM, Talbot NJ, Templeton M, Yandava C, Yarden O, Zeng Q, Rollins JA, Lebrun MH, Dickman M. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet, 2011, 7(8): 1-27. [4] Williamson B, Tudzynski B, Tudzynski P, van Kan JA. Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol, 2007, 8(5): 561-580. [5] Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pothol, 2012, 13(4): 414-430. [6] Schwechheimer C, Bevan M. The regulation of transcription factor activity in plants. Trends Plant Sci, 1998, 3(10): 378-383. [7] Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E. AGRIS: the Arabidopsis gene regulatory information server, an update. Nucleic Acids Res, 2011, 39(Suppl. 1): 1118-1122. [8] Windram O, Madhou P, McHattie S, Hill C, Hickman R, Cooke E, Jenkins DJ, Penfold CA, Baxter L, Breeze E, Kiddle SJ, Rhodes J, Atwell S, Kliebenstein DJ, Kim YS, Stegle O, Borgwardt K, Zhang CJ, Tabrett A, Legaie R, Moore J, Finkenstadt B, Wild DL, Mead A, Rand D, Beynon J, Ott S, Buchanan-Wollaston V, Denby KJ. Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. Plant Cell, 2012, 24(9): 3530-3557. [9] Gong W, Shen YP, Ma LG, Pan Y, Du YL, Wang DH, Yang JY, Hu LD, Liu XF, Dong CX, Ma L, Chen YH, Yang XY, Gao Y, Zhu Dm, Tan Xl, Mu JY, Zhang DB, Liu YL, Dinesh Kumar SP, Li Y, Wang XP, Gu HY, Qu LJ, Bai SN, Lu YT, Li JY, Zhao JD, Zuo J, Huang H, Deng XW, Zhu YX. Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes. Plant Physiol, 2004, 135(2): 773-782. [10] Jalali BL, Bhargava S, Kamble A. Signal transduction and transcriptional regulation of plant defence responses. J Phytopathol, 2006, 154(2): 65-74. [11] Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290(3): 998-1009. [12] 张计育, 王庆菊, 郭忠仁. 植物AP2/ERF类转录因子研究进展. 遗传, 2012, 34(7): 835-847. [13] Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 2003, 15(1): 165-178. [14] Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J, 2002, 29(1): 23-32. [15] Solano R, Stepanova A, Chao QM, Ecker JR. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE- RESPONSE-FACTOR1. Gene Dev, 1998, 12(23): 3703-3714. [16] Wehner N, Hartmann L, Ehlert A, Bottner S, Oñate- Sanchez L, Droge-Laser W. High-throughput protoplast transactivation (PTA) system for the analysis of Arabidopsis transcription factor function. Plant J, 2011, 68(3): 560-569. [17] Zarei A, Körbes AP, Younessi P, Montiel G, Champion A, Memelink J. Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Mol Biol, 2011, 75(4-5): 321-331. [18] Pre M, Atallah M, Champion A, De Vos M, Pieterse CMJ, Memelink J. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol, 2008, 147(3): 1347-1357. [19] Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Goossens A, Körbes AP, Memelink J, Ritsema T, Van Wees SCM, Pieterse CMJ. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell, 2013, 25(2): 744-761. [20] Zhao Y, Wei T, Yin KQ, Chen ZL, Gu HY, Qu LJ, Qin GJ. Arabidopsis RAP2.2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses. New Phytol, 2012, 195(2): 450-460. [21] Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM, Kazan K. The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell, 2009, 21(8): 2237-2252. [22] Ou B, Yin KQ, Liu SN, Yang Y, Gu T, Wing Hui JM, Zhang L, Miao J, Kondou Y, Matsui M, Gu HY, Qu LJ. A high-throughput screening system for Arabidopsis transcription factors and its application to Med25-dependent transcriptional regulation. Mol Plant, 2011, 4(3): 546-555. [23] Moffat CS, Ingle RA, Wathugala DL, Saunders NJ, Knight H, Knight MR. ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis. PLoS ONE, 2012, 7(4): e35995. [24] Son GH, Wan J, Kim HJ, Nguyen XC, Chung WS, Hong JC, Stacey G. Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response. Mol Plant Microbe In, 2011, 25(1): 48-60. [25] Meng XZ, Xu J, He YX, Yang KY, Mordorski B, Liu YD, Zhang SQ. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell, 2013, 25(3): 1126-1142. [26] Yang Z, Tian LN, Latoszek-Green M, Brown D, Wu KQ. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol, 2005, 58(4): 585-596. [27] McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K. Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol, 2005, 139(2): 949-959. [28] 王磊, 高晓清, 朱苓华, 周永力, 黎志康. 植物WRKY转录因子家族基因抗病相关功能的研究进展. 植物遗传资源学报, 2011, 12(1): 80-85. [29] Dong JX, Chen CH, Chen ZX. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol, 2003, 51(1): 21-37. [30] Li J, Brader G, Palva ET. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell, 2004, 16(2): 319-331. [31] Chi YJ, Yang Y, Zhou Y, Zhou J, Fan BF, Yu JQ, Chen ZX. Protein-protein interactions in the regulation of WRKY transcription factors. Mol plant, 2013, 6(2): 287-300. [32] Li J, Brader G, Kariola T, Palva ET. WRKY70 modulates the selection of signaling pathways in plant defense. Plant J, 2006, 46(3): 477-491. [33] AbuQamar S, Chen X, Dhawan R, Bluhm B, Salmeron J, Lam S, Dietrich RA, Mengiste T. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J, 2006, 48(1): 28-44. [34] Hu YR, Dong QY, Yu DQ. Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci, 2012, 185-186: 288-297. [35] Mao P, Duan M, Wei C, Li Y. WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Plant Cell Physiol, 2007, 48(6): 833-842. [36] Wang D, Amornsiripanitch N, Dong X. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PloS Pathog, 2006, 2(11): e123. [37] Xu X, Chen C, Fan B, Chen Z. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell, 2006, 18(5): 1310-1326. [38] Liu ZQ, Yan L, Wu Z, Mei C, Lu K, Yu YT, Liang S, Zhang XF, Wang XF, Zhang DP. Cooperation of three WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis. J Exp Bot, 2012, 63(18): 6371-6392. [39] Zheng Z, Qamar SA, Chen Z, Mengiste T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J, 2006, 48(4): 592-605. [40] Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ, Thorgrimsen S, Palma K, Suarez-Rodriguez MC, Sandbech-Clausen S, Lichota J, Brodersen P, Grasser KD, Mattsson O, Glazebrook J, Mundy J, Petersen M. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. Embo J, 2008, 27(16): 2214-2221. [41] Lai ZB, Li Y, Wang F, Cheng Y, Fan BF, Yu JQ, Chen ZX. Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense. Plant Cell, 2011, 23(10): 3824-3841. [42] Li GJ, Meng XZ, Wang RG, Mao GH, Han L, Liu YD, Zhang SQ. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet, 2012, 8(6): e1002767. [43] Mao GH, Meng XZ, Liu YD, Zheng ZY, Chen ZX, Zhang SQ. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell, 2011, 23(4): 1639-1653. [44] Lai ZB, Wang F, Zheng ZY, Fan BF, Chen ZX. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J, 2011, 66(6): 953-968. [45] Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol, 2012, 159(1): 266-285. [46] Lai ZB, Vinod K, Zheng ZY, Fan BF, Chen ZX. Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol, 2008, 8(1): 68. [47] Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S. Genome-wide analysis of NAC transcription factor family in rice. Gene, 2010, 465(1-2): 30-44. [48] Mauch-Mani B, Flors V. The ATAF1 transcription factor: At the convergence point of ABA-dependent plant defense against biotic and abiotic stresses. Cell Res, 2009, 19(12): 1322-1323. [49] Wu YR, Deng ZY, Lai JB, Zhang YY, Yang CP, Yin BJ, Zhao QZ, Zhang L, Li Y, Yang CW, Xie Q. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res, 2009, 19(11): 1279-1290. [50] Wang XE, Basnayake BMVS, Zhang HJ, Li GJ, Li W, Virk N, Mengiste T, Song FM. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Mol Plant-Microbe Interact, 2009, 22(10): 1227-1238. [51] Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferus R. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J, 2005, 43(5): 745-757. [52] Bu QY, Jiang HL, Li CB, Zhai QZ, Zhang J, Wu XY, Sun JQ, Xie Q, Li CY. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res, 2008, 18(7): 756-767. [53] 孙利军, 李大勇, 张慧娟, 宋风鸣. NAC转录因子在植物抗病和抗非生物胁迫反应中的作用. 遗传, 2012, 34(8): 993-1002. [54] Carviel JL, Al-Daoud F, Neumann M, Mohammad A, Provart NJ, Moeder W, Yoshioka K, Cameron RK. Forward and reverse genetics to identify genes involved in the age-related resistance response in Arabidopsis thaliana. Mol Plant Pothol, 2009, 10(5): 621-634. [55] Zhang YF, Cao GY, Qu LJ, Gu HY. Characterization of Arabidopsis MYB transcription factor gene AtMYB17 and its possible regulation by LEAFY and AGL15. J Genet Genomics, 2009, 36(2): 99-107. [56] 刘蕾, 杜海, 唐晓凤, 吴燕民, 黄玉碧, 唐益雄. MYB转录因子在植物抗逆胁迫中的作用及其分子机理. 遗传, 2008, 30(10): 1265-1271. [57] Martin C, Paz-Ares J. MYB transcription factors in plants. Trends Genet, 1997, 13(2): 67-73. [58] Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010, 15(10): 573-581. [59] Mengiste T, Chen X, Salmeron J, Dietrich R. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell, 2003, 15(11): 2551-2565. [60] Luo HL, Laluk K, Lai ZB, Veronese P, Song FM, Mengiste T. The Arabidopsis botrytis susceptible1 interactor defines a subclass of RING E3 ligases that regulate pathogen and stress responses. Plant Physiol, 2010, 154(4): 1766-1782. [61] Plackett ARG, Thomas SG, Wilson ZA, Hedden P. Gibberellin control of stamen development: a fertile field. Trends Plant Sci, 2011, 16(10): 568-578. [62] van der Ent S, Verhagen BWM, van Doorn R, Bakker D, Verlaan MG, Pel MJC, Joosten RG, Proveniers MCG, van Loon LC, Ton J, Pieterse CMJ. MYB72 is required in early signaling steps of Rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol, 2008, 146(3): 1293-1304. [63] Hückelhoven R. Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol, 2007, 45(1): 101-127. [64] Ko JH, Kim WC, Han KH. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. Plant J, 2009, 60(4): 649-665. [65] Ramírez V, García-Andrade J, Vera P. Enhanced disease resistance to Botrytis cinerea in myb46 Arabidopsis plants is associated to an early down-regulation of CesA genes. Plant Signal Behav, 2011, 6(6): 911-913. [66] Ramírez V, Agorio A, Coego A, García-Andrade J, Hernández MJ, Balaguer B, Ouwerkerk PBF, Zarra I, Vera P. MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis. Plant Physiol, 2011, 155(4): 1920-1935. [67] Shi HJ, Cui RZ, Hu BS, Wang XM, Zhang SP, Liu RX, Dong HS. Overexpression of transcription factor AtMYB44 facilitates Botrytis infection in Arabidopsis. Physiol Mol Plant P, 2011, 76(2): 90-95. [68] Fan WH, Dong XN. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell, 2002, 14(6): 1377-1389. [69] Zander M, La Camera S, Lamotte O, Métraux JP, Gatz C. Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses. Plant J, 2010, 61(2): 200-210. [70] La Camera S, L'Haridon F, Astier J, Zander M, Abou- Mansour E, Page G, Thurow C, Wendehenne D, Gatz C, Metraux JP, Lamotte O. The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants. Plant J, 2011, 68(3): 507-519. [71] Guo H, Ecker JR. The ethylene signaling pathway: new insights. Curr Opin Plant Biol, 2004, 7(1): 40-49. [72] Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR. Five components of the ethylene- response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci USA, 2003, 100(5): 2992-2997. [73] Coego A, Ramirez V, Gil MJ, Flors V, Mauch-Mani B, Vera P. An Arabidopsis homeodomain transcription factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, mediates resistance to infection by necrotrophic pathogens. Plant Cell, 2005, 17(7): 2123-2137. [74] ?a?niewska J, Macioszek VK, Lawrence CB, Kononowicz AK. Fight to the death: Arabidopsis thaliana defense response to fungal necrotrophic pathogens. Acta Physiol Plant, 2010, 32(1): 1-10. |
[1] | 孙兆庆, 闫波. 转录因子GATA6在心血管疾病中的作用及其调控机制[J]. 遗传, 2019, 41(5): 375-383. |
[2] | 于好强,孙福艾,冯文奇,路风中,李晚忱,付凤玲. 转录因子BES1/BZR1调控植物生长发育及抗逆性[J]. 遗传, 2019, 41(3): 206-214. |
[3] | 鞠君毅,赵权. γ-珠蛋白基因表达调控机制与临床应用[J]. 遗传, 2018, 40(6): 429-444. |
[4] | 丁庆倩,王小婷,胡利琴,齐欣,葛林豪,徐伟亚,徐兆师,周永斌,贾冠清,刁现民,闵东红,马有志,陈明. 谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性[J]. 遗传, 2018, 40(4): 327-338. |
[5] | 任岚,肖茹丹,张倩,娄晓敏,张昭军,方向东. KLF1和KLF9对K562细胞红系分化的协同调控作用[J]. 遗传, 2018, 40(11): 998-1006. |
[6] | 张玲, 何建波. GATA6在肝脏发育中的作用及调控机制[J]. 遗传, 2018, 40(1): 22-32. |
[7] | 岳敏, 杨禹, 郭改丽, 秦曦明. 哺乳动物生物钟的遗传和表观遗传研究进展[J]. 遗传, 2017, 39(12): 1122-1137. |
[8] | 郭文雅,崔艳梅,王婷婷,喻德跃,黄方. 野生大豆花发育相关基因GsLFY的功能研究[J]. 遗传, 2017, 39(1): 56-65. |
[9] | 向小华, 吴新儒, 晁江涛, 杨明磊, 杨帆, 陈果, 刘贯山, 王元英. 普通烟草WRKY基因家族的鉴定及表达分析[J]. 遗传, 2016, 38(9): 840-856. |
[10] | 李晓旭, 刘成, 李伟, 张增林, 高晓明, 周慧, 郭永峰. 番茄WOX转录因子家族的鉴定及其进化、表达分析[J]. 遗传, 2016, 38(5): 444-460. |
[11] | 杨明磊, 晁江涛, 王大伟, 胡军华, 吴华, 龚达平, 刘贯山. 烟草C2H2锌指蛋白转录因子家族成员的鉴定与表达分析[J]. 遗传, 2016, 38(4): 337-349. |
[12] | 翟亚男, 许泉, 郭亚, 吴强. 原钙粘蛋白基因簇调控区域中成簇的CTCF结合位点分析[J]. 遗传, 2016, 38(4): 323-336. |
[13] | 谷彦冰, 冀志蕊, 迟福梅, 乔壮, 徐成楠, 张俊祥, 周宗山, 董庆龙. 桃WRKY基因家族全基因组鉴定和表达分析[J]. 遗传, 2016, 38(3): 254-270. |
[14] | 马建辉, 仝豆豆, 张文利, 张黛静, 邵云, 杨云, 姜丽娜. 乌拉尔图小麦NAC转录因子的筛选与分析[J]. 遗传, 2016, 38(3): 243-253. |
[15] | 李莉云,史佳楠,杨烁,孙财强,刘国振. 基于转录特征的水稻WRKY转录因子功能注释[J]. 遗传, 2016, 38(2): 126-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: