[1] Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science , 2009, 324(5929): 930-935. [2] Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science , 2011, 333(6047): 1300-1303. [3] Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5 mC to 5 hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature , 2010, 466(7310): 1129-1133. [4] Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature , 2011, 473(7347): 398-402. [5] Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, Figueroa ME, Vasanthakumar A, Patel J, Zhao XY, Perna F, Pandey S, Madzo J, Song CX, Dai Q, He C, Ibrahim S, Beran M, Zavadil J, Nimer SD, Melnick A, Godley LA, Aifantis I, Levine RL. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell , 2011, 20(1): 11-24. [6] Wu H, D'Alessio AC, Ito S, Xia K, Wang ZB, Cui KR, Zhao KJ, Sun YE, Zhang Y. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature , 2011, 473(7347): 389-393. [7] Yamaguchi S, Hong K, Liu R, Shen L, Inoue A, Diep D, Zhang K, Zhang Y. Tet1 controls meiosis by regulating meiotic gene expression. Nature , 2012, 492(7429): 443- 447. [8] Xu YF, Wu FZ, Tan L, Kong LC, Xiong LJ, Deng J, Barbera AJ, Zheng LJ, Zhang HK, Huang S, Min JR, Nicholson T, Chen TP, Xu GL, Shi Y, Zhang K, Shi YG. Genome-wide regulation of 5 hmC, 5 mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell , 2011, 42(4): 451-464. [9] Xu YF, Xu C, Kato A, Tempel W, Abreu JG, Bian CB, Hu YG, Hu D, Zhao B, Cerovina T, Diao JB, Wu FZ, He HH, Cui QC, Clark E, Ma C, Barbara A, Veenstra GJC, Xu GL, Kaiser UB, Liu XS, Sugrue SP, He X, Min JR, Kato Y, Shi YG. Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell , 2012, 151(6): 1200-1213. [10] Ko M, An J, Bandukwala HS, Chavez L, Äijö T, Pastor WA, Segal MF, Li HM, Koh KP, Lähdesmäki H, Hogan PG, Aravind L, Rao A. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature , 2013, 497(7447): 122-126. [11] Guo JU, Su YJ, Zhong C, Ming GL, Song HJ. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell , 2011, 145(3): 423-434. [12] He YF, Li BZ, Li Z, Liu P, Wang Y, Tang QY, Ding JP, Jia YY, Chen ZC, Li L, Sun Y, Li XX, Dai Q, Song CX, Zhang KL, He C, Xu GL. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science , 2011, 333(6047): 1303-1307. [13] Zhang L, Lu XY, Lu JY, Liang HH, Dai Q, Xu GL, Luo C, Jiang HL, He C. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat Chem Biol , 2012, 8(4): 328-330. [14] Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res , 2004, 32(14): 4100-4108. [15] Valinluck V, Sowers LC. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res , 2007, 67(3): 946-950. [16] Inoue A, Zhang Y. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science , 2011, 334(6053): 194. [17] Blaschke K, Ebata KT, Karimi MM, Zepeda-Martínez JA, Goyal P, Mahapatra S, Tam A, Laird DJ, |