[1] Ma LF, Zhang JM, Huang GQ, Li Y, Li XB, Zheng Y. Molecular characterization of cotton C-repeat/ dehydration-responsive element binding factor genes that are involved in response to cold stress. Mol Bio Rep , 2014, 41(7): 4369-4379. [2] Pérez-Rodríguez P, Riaño-Pachón DM, Corrêa LGG, Rensing SA, Kersten B, Mueller-Roeber B. PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res , 2010, 38(Database issue): D822-D827. [3] Llorca CM, Potschin M, Zentgraf U. bZIPs and WRKYs: two large transcription factor families executing two different functional strategies. Front Plant Sci , 2014, 5: 169. [4] Kaplan-Levy RN, Brewer PB, Quon T, Smyth DR. The Trihelix family of transcription factors-light, stress and development. Trends Plant Sci , 2012, 17(3): 163-171. [5] Wang XH, Li QT, Chen HW, Zhang WK, Ma B, Chen SY, Zhang JS. Trihelix transcription factor GT-4 mediates salt tolerance via interaction with TEM2 in Arabidopsis . BMC Plant Biol , 2014, 14: 339-353. [6] 罗军玲, 赵娜, 卢长明. 植物Trihelix转录因子家族研究进展. 遗传, 2012, 34(12): 1551-1560. [7] Qin Y, Ma X, Yu GH, Wang Q, Wang L, Kong LR, Kim W, Wang HW. Evolutionary history of Trihelix family and their functional diversification. DNA Res , 2014, 21(5): 499-510. [8] Xie ZM, Zou HF, Lei G, Wei W, Zhou QY, Niu CF, Liao Y, Tian AG, Ma B, Zhang WK, Zhang JS, Chen SY. Soybean Trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis . PLoS One , 2009, 4(9): e6898. [9] 关秋玲, 陈焕新, 张毅, 李秋莉. 植物GT元件和GT因子的研究进展. 遗传, 2009, 31(2): 123-130. [10] Nagata T, Niyada E, Fujimoto N, Nagasaki Y, Noto K, Miyanoiri Y, Murata J, Hiratsuka K, Katahira M. Solution structures of the Trihelix DNA-binding domains of the wild-type and a phosphomimetic mutant of Arabidopsis GT-1: mechanism for an increase in DNA-binding affinity through phosphorylation. Proteins , 2010, 78(14): 3033-3047. [11] Dehesh K, Bruce WB, Quail PH. A trans-acting factor that binds to a GT-motif in a phytochrome gene promoter. Science , 1990, 250(4986): 1397-1399. [12] Gilmartin PM, Memelink J, Hiratsuka K, Kay SA, Chua NH. Characterization of a gene encoding a DNA binding protein with specificity for a light-responsive element. Plant Cell , 1992, 4(7): 839-849. [13] O'Brien M, Kaplan-Levy RN, Quon T, Sappl PG, Smyth DR. PETAL LOSS, a Trihelix transcription factor that represses growth in Arabidopsis thaliana, binds the energy-sensing SnRK1 kinase AKIN10. J Exp Bot , 2015, 66(9): 2475-2485. [14] Weselake RJ, Taylor DC, Rahman MH, Shah S, Laroche A, McVetty PBE, Harwood JL. Increasing the flow of carbon into seed oil. Biotechnol Adv , 2009, 27(6): 866-878. [15] Gao MJ, Lydiate DJ, Li X, Lui HL, Gjetvaj B, Hegedus DD, Rozwadowski K. Repression of seed maturation genes by a Trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell , 2009, 21(1): 54-71. [16] Gao MJ, Li X, Lui HL, Gropp GM, Lydiate DD, Wei S, Hegedus DD. ASIL1 is required for proper timing of seed filling in Arabidopsis . Plant Signal Behav , 2011, 6(12): 1886-1888. [17] Barr MS, Willmann MR, Jenik PD. Is there a role for Trihelix transcription factors in embryo maturation? Plant Signal Behav , 2012, 7(2): 205-209. [18] Lampugnani ER, Kilinc A, Smyth DR. PETAL LOSS is a boundary gene that inhibits growth between developing sepals in Arabidopsis thaliana. Plant J , 2012, 71(5): 724-735. [19] Zhou Y, Lu DF, Li CY, Luo JH, Zhu BF, Zhu JJ, Shangguan YY, Wang ZX, Sang T, Zhou B, Han B. Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION. Plant Cell , 2012, 24(3): 1034-1048. [20] Wang R, Hong GF, Han B. Transcript abundance of rml1, encoding a putative GT1-like factor in rice, is up-regulated by Magnaporthe grisea and down-regulated by light. Gene , 2004, 324: 105-115. [21] Park HC, Kim ML, Ka |