[1] Boyer JS. Plant productivity and environment. Science, 1982, 218(4571): 443–448.<\p>
[2] Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol, 2002, 48(5): 649–665.<\p>
[3] 刘蕾, 杜海, 唐晓凤, 吴燕民, 黄玉碧, 唐益雄. MYB转录因子在植物抗逆胁迫中的作用及其分子机理. 遗传, 2008, 30(10): 1265–1271.<\p>
[4] Schwechheimer C, Bevan M. The regulation of transcription factor activity in plants. Trends Plant Sci, 1998, 3(10): 378–383.<\p>
[5] Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J, 1987, 6(12): 3553–3558.<\p>
[6] Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol, 2003, 6(5): 410–417.<\p>
[7] Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell, 1995, 7(2): 173–182.<\p>
[8] Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010, 15(10): 573–581.<\p>
[9] Wilkins O, Nahal H, Foong J, Provart NJ, Campbell MM. Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol, 2009, 149(2): 981–993.<\p>
[10] Du H, Feng BR, Yang SS, Huang YB, Tang YX. The R2R3-MYB transcription factor gene family in maize. PloS ONE, 2012, 7(6): e37463.<\p>
[11] Feng CP, Andreasson E, Maslak A, Mock HP, Mattsson O, Mundy J. Arabidopsis MYB68 in development and responses to environmental cues. Plant Sci, 2004, 167(5): 1099–1107.<\p>
[12] Lippold F, Sanchez DH, Musialak M, Schlereth A, Scheible WR, Hincha DK, Udvardi MK. AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiol, 2009, 149(4): 1761–1772.<\p>
[13] Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C. Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J, 2008, 53(1): 53–64.<\p>
[14] Lobovikov M, Ball L, Guardia M, Russo L. World bamboo resources: a thematic study prepared in the framework of the Global Forest Resouces Assessment 2005. Rome: Food and Agriculture Organization of the United Nations, 2007.<\p>
[15] Zhou MB, Yang P, Gao PJ, Tang DQ. Identification of differentially expressed sequence tags in rapidly elongating Phyllostachys pubescens internodes by suppressive subtractive hybridization. Plant Mol Biol Rep, 2011, 29(1): 224–231.<\p>
[16] Liu L, Cao XL, Bai R, Yao N, Li LB, He CF. Isolation and characterization of the cold-induced Phyllostachys edulis AP2/ERF family transcription factor, peDREB1. Plant Mol Biol Rep, 2012, 30(3): 679–689.<\p>
[17] Wei G, Pan Y, Lei J, Zhu YX. Molecular cloning, phylogenetic analysis, expressional profiling and in vitro studies of TINY2 from Arabidopsis thaliana. J Biochem Mol Biol, 2005, 38(4): 440–446.<\p>
[18] Zhang YY, Yang CW, Li Y, Zheng NY, Chen H, Zhao QZ, Gao T, Guo HS, Xie Q. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell, 2007, 19(6): 1912– 1929.<\p>
[19] Romero I, Fuertes A, Benito M, Malpica J, Leyva A, Paz-Ares J. More than 80 R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. Plant J, 1998, 14(3): 273–284.<\p>
[20] Boddu J, Svabek C, Ibraheem F, Jones AD, Chopra S. Characterization of a deletion allele of a sorghum Myb gene yellow seed1 showing loss of 3-deoxyflavonoids. Plant Sci, 2005, 169(3): 542–552.<\p>
[21] Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet- Gigot N, Grima-Pettenati J. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J, 2005, 43(4): 553–567.<\p>
[22] Verdonk JC, Haring MA, van Tunen AJ, Schuurink RC. ODORANT1 regulates fragrance biosynthesis in petunia flowers. Plant Cell, 2005, 17(5): 1612–1624.<\p>
[23] Lea US, Slimestad R, Smedvig P, Lillo C. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta, 2007, 225(5): 1245–1253.<\p>
[24] Churin Y, Adam E, Kozma-Bognar L, Nagy F, Börner T. Characterization of two Myb-like transcription factors binding to CAB promoters in wheat and barley. Plant Mol Biol, 2003, 52(2): 447–462.<\p>
[25] Higginson T, Li SF, Parish RW. AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J, 2003, 35(2): 177–192.<\p>
[26] Martin C, Paz-Ares J. MYB transcription factors in plants. Trends Genet, 1997, 13(2): 67–73.<\p>
[27] Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J, 2004, 37(1): 115–127.<\p>
[28] Shin B, Choi G, Yi H, Yang S, Cho I, Kim J, Lee S, Paek NC, Kim JH, Song PS. AtMYB21, a gene encoding a flower-specific transcription factor, is regulated by COP1. Plant J, 2002, 30(1): 23–32.<\p>
[29] Raffaele S, Rivas S, Roby D. An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett, 2006, 580(14): 3498–3504.<\p>
[30] Peng ZH, Lu Y, Li L, Zhao Q, Feng Q, Gao ZM, Lu HY, Hu T, Yao N, Liu KY, Li Y, Fan DL, Guo YL, Li WJ, Lu YQ, Weng QJ, Zhou CC, Zhang L, Huang T, Zhao Y, Zhu CR, Liu XG, Yang XW, Wang T, Miao K, Zhuang CY, Cao XL, Tang WL, Liu GS, Liu YL, Chen J, Liu ZJ, Yuan LC, Liu ZH, Huang XH, Lu TT, Fei BH, Ning ZM, Han B, Jiang ZH. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat Genet, 2013, 45(4): 456–461.<\p>
[31] Ogata K, Kanei-Ishii C, Sasaki M, Hatanaka H, Nagadoi A, Enari M, Nakamura H, Nishimura Y, Ishii S, Sarai A. The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation. Nat Struct Mol Biol, 1996, 3(2): 178–187.<\p>
[32] Jia L, Clegg MT, Jiang T. Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica genomes. Plant Physiol, 2004, 134(2): 575–585.<\p>
[33] Zhang LC, Zhao GY, Jia JZ, Liu X, Kong XY. Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress. J Exp Bot, 2012, 63(1): 203–214.<\p>
[34] Zhang LC, Zhao GY, Xia C, Jia JZ, Liu X, Kong XY. A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. J Exp Biol, 2012, 63(16): 5873–5885.<\p>
[35] Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10(8): 1391–1406.<\p>
[36] Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 2003, 33(4): 751–763.<\p>
[37] Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Bioch Biophys Res Commun, 2007, 353(2): 299–305.<\p>
[38] 朱丹, 柏锡, 朱延明, 才华, 李勇, 纪巍, 陈超, 安琳, 朱毅. 野生大豆盐碱胁迫相关GsTIFY11b的克隆与功能分析. 遗传, 2012, 34(2): 230–239.<\p>
[39] 周晓馥, 王兴智. 植物耐盐相关基因: SOS基因家族研究进展. 遗传, 2002, 24(2): 190–192.<\p>
[40] Wang H, Datla R, Georges F, Loewen M, Cutler AJ. Promoters from kin1 and cor6.6, two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA, osmoticum and dehydration. Plant Mol Biol, 1995, 28(4): 605–617.<\p> |