[1] Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet , 2004, 5(6): 435-445. [2] Morgante M, Olivieri AM. PCR-amplified microsatellites as markers in plant genetics. Plant J , 1993, 3(1): 175-182. Ellegren H, Moore S, Robinson N, Byrne K, Ward W, Sheldon BC. Microsatellite evolution-a reciprocal study of repeat lengths at homologous loci in cattle and sheep. Mol Biol Evol , 1997, 14(8): 854-860. [3] Webster MT, Smith NGC, Ellegren H. Microsatellite evolution inferred from human-chimpanzee genomic sequence alignments. Proc Natl Acad Sci USA , 2002, 99(13): 8748- 8753. [4] Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL. High resolution of human evolutionary trees with polymorphic microsatellites. Nature , 1994, 368(6470): 455-457. [5] 杨弘, 李大宇, 曹祥, 邹芝英, 肖炜, 祝璟琳. 微卫星标记分析罗非鱼群体的遗传潜力. 遗传, 2011, 33(7): 768-775. [6] Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A. Cross-species amplification of soybean ( Glycine max ) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol , 1998, 15(10): 1275-1287. [7] Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet , 2002, 30(2): 194-200. [8] Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellites in rice ( Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res , 2001, 11(8): 1441-1452. [9] 谢文刚, 张新全, 马啸, 彭燕, 黄琳凯. 鸭茅种质遗传变异及亲缘关系的SSR分析. 遗传, 2009, 31(6): 654-662. [10] Vowles EJ, Amos W. Quantifying ascertainment bias and species-specific length differences in human and chimpanzee microsatellites using genome sequences. Mol Biol Evol , 2006, 23(3): 598-607. [11] Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD. The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res , 2008, 18(1): 30-38. Chistiakov DA, Hellemans B, Volckaert FAM. Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fish genetics. Aquaculture , 2006, 255(1-4): 1-29. [12] La Rota M, Kantety RV, Yu JK, Sorrells ME. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics , 2005, 6(1): 23. [13] Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, Cann HM, Barsh GS, Feldman M, Cavalli-Sforza LL, Myers RM. Worldwide human relationships inferred from genome-wide patterns of variation. Science , 2008, 319(5866): 1100-1104. [14] Sonah H, Deshmukh RK, Sharma A, Singh VP, Gupta DK, Gacche RN, Rana JC, Singh NK, Sharma TR. Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium . PLoS One , 2011, 6(6): e21298. [15] Wang HT, Li XM, Gao WH, Jin X, Zhang XL, Lin ZX. Comparison and development of EST-SSRs from two 454 sequencing libraries of Gossypium barbadense . Euphytica , 2014, 198(2): 277-288. Han ZG, Wang CB, Song XL, Guo WZ, Gou ZY, Li CH, Chen XY, Zhang TZ. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet , 2006, 112(3): 430-439. [16] Wang CB, Guo WZ, Cai CP, Zhang TZ. Characterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii Ulbrich. Chin Sci Bull , 2006, 51(5): 557-561. [17] Lacape JM, Dessauw D, Rajab M, Noyer JL, Hau B. Microsatellite diversity in tetraploid Gossypium germplasm : assembling a highly informative genotyping set of cotton SSRs. Mol Breeding , 2007, 19(1): 45-58. [18] Alves MF, Barroso PA, Ciampi AY, Hoffmann LV, Azevedo VC, Cavalcante U. Diversity and genetic structure among subpopulations of Gossypium mustelinum (Malvaceae). Genet Mol Res , 2013, 12(1): 597-609. [19] Liu DQ, Guo XP, Lin ZX, Nie YC, Zhang XL. Genetic diversity of Asian cotton ( Gossypium arboreum L.) in China evaluated by microsatellite analysis. Genet Resour Crop Ev , 2006, 53(6): 1145-1152. [20] Shen XL, Zhang TZ, Guo WZ, Zhu XF, Zhang XY. Mapping fiber and yield QTLs with main, epistatic, and QTL× environment interaction effects in recombinant inbred lines of upland cotton. Crop Sci , 2006, 46(1): 61-66. [21] Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, Chen ZJ. Genetic mapping and QTL analysis of fiber-related traits in cotton ( Gossypium ). Theor Appl Genet , 2004, 108(2): 280-291. [22] Jiang CX, Wright RJ, Woo SS, DelMonte TA, Paterson AH. QTL analysis of leaf morphology in tetraploid Gossypium (cotton). Theor Appl Genet , 2000, 100(3-4): 409-418. [23] Jia YX, Sun XW, Sun JL, Pan Z, Wang XW, He SP, Xiao SH, Shi WJ, Zhou ZL, Pang BY, Wang LR, Liu JG, Ma J, Du XM, Zhu J. Association mapping for epistasis and environmental interaction of yield traits in 323 cotton cultivars under 9 different environments. PLoS One , 2014, 9(5): e95882. [24] Abdurakhmonov IY, Kohel RJ, Yu JZ, Pepper AE, Abdullaev AA, Kushanov FN, Salakhutdinov IB, Buriev ZT, Saha S, Scheffler BE, Jenkins JN, Abdukarimov A. Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics , 2008, 92(6): 478-487. [25] Kantartzi SK, Stewart JM. Association analysis of fibre traits in Gossypium arboreum accessions. Plant Breeding , 2008, 127(2): 173-179. [26] Wendel JF, Brubaker C, Alvarez I, Cronn R, Stewart JM. Evolution and natural history of the cotton genus. In: Paterson AH, ed. Genetics and Genomics of Cotton. US: Springer, 2009: 3-22. [27] Li FG, Fan GY, Wang KB, Sun FM, Yuan YL, Song GL, Li Q, Ma ZY, Lu CR, Zou CS, Chen WB, Liang XM, Shang HH, Liu WQ, Shi CC, Xiao GH, Gou CY, Ye WW, Xu X, Zhang XY, Wei HL, Li ZF, Zhang GY, Wang JY, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu SS. Genome sequence of the cultivated cotton Gossypium arboreum . Nat Genet , 2014, 46(6): 567-572. [28] Wang KB, Wang ZW, Li FG, Ye WW, Wang JY, Song GL, Yue Z, Cong L, Shang HH, Zhu SL, Zou CS, Li Q, Yuan YL, Lu CR, Wei HL, Gou CY, Zheng ZQ, Yin Y, Zhang XY, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu SX. The draft genome of a diploid cotton Gossypium raimondii . Nat Genet , 2012, 44(10): 1098-1103. [29] Rai KM, Singh SK, Bhardwaj A, Kumar V, Lakhwani D, Srivastava A, Jena SN, Yadav HK, Bag SK, Sawant SV. Large-scale resource development in Gossypium hirsutum L. by 454 sequencing of genic-enriched libraries from six diverse genotypes. Plant Biotechnol J , 2013, 11(8): 953-963. [30] Wang K, Song XL, Han ZG, Guo WZ, Yu JZ, Sun J, Pan JJ, Kohel RJ, Zhang TZ. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet , 2006, 113(1): 73-80. McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res , 2004, 32(Web Server issue): W20-W25. [31] Sawaya S, Bagshaw A, Buschiazzo E, Kumar P, Chowdhury S, Black MA, Gemmell N. Microsatellite tandem repeats are abundant in human promoters and are associated with regulatory elements. PLoS One , 2013, 8(2): e54710. [32] Tóth G, Gáspári Z, Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res , 2000, 10(7): 967-981. [33] Loire E, Higuet D, Netter P, Achaz G. Evolution of coding microsatellites in primate genomes. Genome Biol Evol , 2013, 5(2): 283-295. [34] Li YC, Korol AB, Fahima T, Nevo E. Microsatellites within genes: structure, function, and evolution. Mol Biol Evol , 2004, 21(6): 991-1007. [35] Garza JC, Slatkin M, Freimer NB. Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Mol Biol Evol , 1995, 12(4): 594-603. [36] Cooper G, Rubinsztein DC, Amos W. Ascertainment bias cannot entirely account for human microsatellites being longer than their chimpanzee homologues. Hum Mol Genet , 1998, 7(9): 1425-1429. [37] Kruglyak S, Durrett RT, Schug MD, Aquadro CF. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci USA , 1998, 95(18): 10774-10778. [38] Santibáñez-Koref MF, Gangeswaran R, Hancock JM. A relationship between lengths of microsatellites and nearby substitution rates in mammalian genomes. Mol Biol Evol , 2001, 18(11): 2119-2123. |