[1] Wyatt GR, Cohen SS. A new pyrimidine base from bacteriophage nucleic acids. Nature , 1952, 170(4338): 1072- 1073.
[2] Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science , 2009, 324(5929): 929-930.
[3] Tahiliani M, Koh KP, Shen YH, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science , 2009, 324(5929): 930-935.
[4] Wu H, Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev , 2011, 25(23): 2436-2452.
[5] Tan L, Shi YG. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development , 2012, 139(11): 1895-1902.
[6] Zhang YX, Gao KR, Yu SY. Progress of research on 5-hydroxymethylcytosine. Hereditas (Beijing) , 2012, 34(5): 509- 518. 张燕霞, 高可润, 禹顺英. 5-羟甲基胞嘧啶的研究进展. 遗传, 2012, 34(5): 509-518.
[7] Jin SG, Jiang Y, Qiu RX, Rauch TA, Wang YS, Schackert G, Krex D, Lu Q, Pfeifer GP. 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res , 2011, 71(24): 7360- 7365.
[8] Lian CG, Xu YF, Ceol C, Wu FZ, Larson A, Dresser K, Xu WQ, Tan L, Hu YG, Zhan Q, Lee CW, Hu D, Lian BQ, Kleffel S, Yang YJ, Neiswender J, Khorasani AJ, Fang R, Lezcano C, Duncan LM, Scolyer RA, Thompson JF, Kakavand H, Houvras Y, Zon LI, Mihm MC Jr, Kaiser UB, Schatton T, Woda BA, Murphy GF, Shi YG. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell , 2012, 150(6): 1135-1146.
[9] Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature , 2010, 466(7310): 1129-1133.
[10] Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science , 2011, 333(6047): 1300-1303.
[11] Nestor C, Ruzov A, Meehan RR, Dunican DS. Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Biotechniques , 2010, 48(4): 317-319.
[12] Jin SG, Kadam S, Pfeifer GP. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res , 2010, 38(11): e125.
[13] Leoni C, Montagner S, Deho' L, D'Antuono R, De Matteis G, Marzano AV, Merante S, Orlandi EM, Zanotti R, Monticelli S. Reduced DNA methylation and hydroxymethylation in patients with systemic mastocytosis. Eur J Haematol , 2015, 95(6): 566-575.
[14] Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, Liu XS, Aravind L, Agarwal S, Maciejewski JP, Rao A. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature , 2010, 468(7325): 839-843.
[15] He YF, Li BZ, Li Z, Liu P, Wang Y, Tang QY, Ding JP, Jia YY, Chen ZC, Li L, Sun Y, Li XX, Dai Q, Song CX, Zhang KL, He C, Xu GL. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science , 2011, 333(6047): 1303-1307.
[16] Ruoppolo M, Nitti G, Valsasina B, Malorni A, Marino G, Pucci P. Disulfide isoform intermediates in the reoxidation of recombinant human basic fibroblast growth factor. Biochemistry , 1993, 32(19): 4991-4996.
[17] Thomas B, Akoulitchev AV. Mass spectrometry of RNA. Trends Biochem Sci , 2006, 31(3): 173-181.
[18] Globisch D, Münzel M, Müller M, Michalakis S, Wagner M, Koch S, Brückl T, Biel M, Carell T. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One , 2010, 5(12): e15367.
[19] Le T, Kim KP, Fan GP, Faull KF. A sensitive mass spectrometry method for simultaneous quantification of DNA met |