遗传 ›› 2016, Vol. 38 ›› Issue (3): 206-216.doi: 10.16288/j.yczz.15-480
方科, 张凯翔, 王建, 付志猛, 赵湘辉
收稿日期:
2015-11-26
修回日期:
2015-12-25
出版日期:
2016-03-20
发布日期:
2016-03-20
通讯作者:
赵湘辉,博士,副教授,研究方向:神经发育的表观遗传调控.
E-mail:xianghuizhao@fmmu.edu.cn
作者简介:
方科,本科,临床医学专业.E-mail: fxzbzhyh@foxmail.com
基金资助:
Ke Fang, Kaixiang Zhang, Jian Wang, Zhimeng Fu, Xianghui Zhao
Received:
2015-11-26
Revised:
2015-12-25
Online:
2016-03-20
Published:
2016-03-20
Supported by:
摘要: 被称为"第六种碱基"的5-羟甲基胞嘧啶(5-hydroxymethylcytosine, 5hmC),广泛分布于多种哺乳动物的组织和细胞中,与胚胎发育,神经系统功能以及肿瘤研究高度相关.与5-甲基胞嘧啶(5-methylcytosine, 5mC)相比,5hmC在组织中含量更低,难以精确的检测.随着研究的深入,5hmC参与的重要生物学作用逐渐被人们发现,同时也促使着5hmC的检测和定量方法不断发展.为了区分5hmC与其他胞嘧啶衍生物,很多利用化学或者酶学修饰实现靶向检测或非靶向富集5hmC的方法应运而生.因此,选择并发展灵敏,准确,可靠的5hmC检测技术对于表观遗传研究至关重要.本文重点综述了近年来发展起来的5hmC检测和测序技术,通过比较分析各种方法的优缺点,为研究人员选择特定合适的方法开展相关研究提供重要的参考.
方科, 张凯翔, 王建, 付志猛, 赵湘辉. 表观遗传学新标记--5-羟甲基胞嘧啶检测方法的研究进展[J]. 遗传, 2016, 38(3): 206-216.
Ke Fang, Kaixiang Zhang, Jian Wang, Zhimeng Fu, Xianghui Zhao. Advances on the profiling of 5-hydroxymethylcytosine[J]. HEREDITAS(Beijing), 2016, 38(3): 206-216.
[1] Wyatt GR, Cohen SS. A new pyrimidine base from bacteriophage nucleic acids. Nature , 1952, 170(4338): 1072- 1073. [2] Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science , 2009, 324(5929): 929-930. [3] Tahiliani M, Koh KP, Shen YH, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science , 2009, 324(5929): 930-935. [4] Wu H, Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev , 2011, 25(23): 2436-2452. [5] Tan L, Shi YG. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development , 2012, 139(11): 1895-1902. [6] Zhang YX, Gao KR, Yu SY. Progress of research on 5-hydroxymethylcytosine. Hereditas (Beijing) , 2012, 34(5): 509- 518. 张燕霞, 高可润, 禹顺英. 5-羟甲基胞嘧啶的研究进展. 遗传, 2012, 34(5): 509-518. [7] Jin SG, Jiang Y, Qiu RX, Rauch TA, Wang YS, Schackert G, Krex D, Lu Q, Pfeifer GP. 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res , 2011, 71(24): 7360- 7365. [8] Lian CG, Xu YF, Ceol C, Wu FZ, Larson A, Dresser K, Xu WQ, Tan L, Hu YG, Zhan Q, Lee CW, Hu D, Lian BQ, Kleffel S, Yang YJ, Neiswender J, Khorasani AJ, Fang R, Lezcano C, Duncan LM, Scolyer RA, Thompson JF, Kakavand H, Houvras Y, Zon LI, Mihm MC Jr, Kaiser UB, Schatton T, Woda BA, Murphy GF, Shi YG. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell , 2012, 150(6): 1135-1146. [9] Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature , 2010, 466(7310): 1129-1133. [10] Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science , 2011, 333(6047): 1300-1303. [11] Nestor C, Ruzov A, Meehan RR, Dunican DS. Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Biotechniques , 2010, 48(4): 317-319. [12] Jin SG, Kadam S, Pfeifer GP. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res , 2010, 38(11): e125. [13] Leoni C, Montagner S, Deho' L, D'Antuono R, De Matteis G, Marzano AV, Merante S, Orlandi EM, Zanotti R, Monticelli S. Reduced DNA methylation and hydroxymethylation in patients with systemic mastocytosis. Eur J Haematol , 2015, 95(6): 566-575. [14] Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, Liu XS, Aravind L, Agarwal S, Maciejewski JP, Rao A. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature , 2010, 468(7325): 839-843. [15] He YF, Li BZ, Li Z, Liu P, Wang Y, Tang QY, Ding JP, Jia YY, Chen ZC, Li L, Sun Y, Li XX, Dai Q, Song CX, Zhang KL, He C, Xu GL. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science , 2011, 333(6047): 1303-1307. [16] Ruoppolo M, Nitti G, Valsasina B, Malorni A, Marino G, Pucci P. Disulfide isoform intermediates in the reoxidation of recombinant human basic fibroblast growth factor. Biochemistry , 1993, 32(19): 4991-4996. [17] Thomas B, Akoulitchev AV. Mass spectrometry of RNA. Trends Biochem Sci , 2006, 31(3): 173-181. [18] Globisch D, Münzel M, Müller M, Michalakis S, Wagner M, Koch S, Brückl T, Biel M, Carell T. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One , 2010, 5(12): e15367. [19] Le T, Kim KP, Fan GP, Faull KF. A sensitive mass spectrometry method for simultaneous quantification of DNA methylation and hydroxymethylation levels in biological samples. Anal Biochem , 2011, 412(2): 203-209. [20] Szwagierczak A, Bultmann S, Schmidt CS, Spada F, Leonhardt H. Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res , 2010, 38(19): e181. [21] Zhao C, Wang HL, Zhao BL, Li CP, Yin RC, Song MY, Liu BD, Liu Z, Jiang GB. Boronic acid-mediated polymerase chain reaction for gene- and fragment-specific detection of 5-hydroxymethylcytosine. Nucleic Acids Res , 2014, 42(9): e81. [22] Davis T, Vaisvila R. High sensitivity 5-hydroxymethylcytosine detection in Balb/C brain tissue. J Vis Exp , 2011(48): 2661. [23] Inoue A, Shen L, Dai Q, He C, Zhang Y. Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res , 2011, 21(12): 1670-1676. [24] Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature , 2011, 473(7347): 398-402. [25] Adey A, Shendure J. Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res , 2012, 22(6): 1139-1143. [26] Shen L, Zhang Y. 5-hydroxymethylcytosine: generation, fate, and genomic distribution. Curr Opin Cell Biol, 2013, 25(3): 289-296. [27] Szulwach KE, Li XK, Li YJ, Song CX, Wu H, Dai Q, Irier H, Upadhyay AK, Gearing M, Levey AI, Vasanthakumar A, Godley LA, Chang Q, Cheng XD, He C, Jin P. 5-hmC- mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci , 2011, 14(12): 1607- 1616. [28] Stroud H, Feng SH, Morey Kinney S, Pradhan S, Jacobsen SE. 5-hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol , 2011, 12(6): R54. [29] Nestor CE, Ottaviano R, Reddington J, Sproul D, Reinhardt D, Dunican D, Katz E, Michael Dixon J, Harrison DJ, Meehan RR. Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res , 2012, 22(3): 467-477. [30] Thomson JP, Hunter JM, Nestor CE, Dunican DS, Terranova R, Moggs JG, Meehan RR. Comparative analysis of affinity-based 5-hydroxymethylation enrichment techniques. Nucleic Acids Research , 2013, 41(22): e206. [31] Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P, Tahiliani M, Daley GQ, Liu XS, Ecker JR, Milos PM, Agarwal S, Rao A. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature , 2011, 473(7347): 394-397. [32] Song CX, Szulwach KE, Fu Y, Dai Q, Yi CQ, Li XK, Li YJ, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang BC, Godley LA, Hicks LM, Lahn BT, Jin P, He C. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol , 2011, 29(1): 68-72. [33] Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR. Copper- free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci USA, 2007, 104(43): 16793-16797. [34] Pastor WA, Huang Y, Henderson HR, Agarwal S, Rao A. The GLIB technique for genome-wide mapping of 5-hydroxymethylcytosine. Nat Protoc , 2012, 7(10): 1909-1917. [35] Robertson AB, Dahl JA, Ougland R, Klungland A. Pull- down of 5-hydroxymethylcytosine DNA using JBP1-coated magnetic beads. Nat Protoc , 2012, 7(2): 340-350. [36] Cui LB, Chung TH, Tan D, Sun XG, Jia XY. JBP1-seq: a fast and efficient method for genome-wide profiling of 5hmC. Genomics , 2014, 104(5): 368-375. [37] Petterson A, Chung TH, Tan D, Sun XG, Jia XY. RRHP: a tag-based approach for 5-hydroxymethylcytosine mapping at single-site resolution. Genome Biol , 2014, 15(9): 456. [38] Sun ZY, Terragni J, Borgaro JG, Liu YW, Yu L, Guan SX, Wang H, Sun DP, Cheng XD, Zhu ZY, Pradhan S, Zheng Y. High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep , 2013, 3(2): 567-576. [39] Wang H, Guan SX, Quimby A, Cohen-Karni D, Pradhan S, Wilson G, Roberts RJ, Zhu ZY, Zheng Y. Comparative characterization of the PvuRts1I family of restriction enzymes and their application in mapping genomic 5-hydroxymethylcytosine. Nucleic Acids Res , 2011, 39(21): 9294-9305. [40] Sun ZY, Dai N, Borgaro JG, Quimby A, Sun DP, Corrêa IR Jr, Zheng Y, Zhu ZY, Guan SX. A sensitive approach to map genome-wide 5-hydroxymethylcytosine and 5-formylcytosine at single-base resolution. Mol Cell , 2015, 57(4): 750-761. [41] Yu M, Hon GC, Szulwach KE, Song CX, Jin P, Ren B, He C. Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc , 2012, 7(12): 2159-2170. [42] Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, Li XK, Dai Q, Shen Y, Park B, Min JH, Jin P, Ren B, He C. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell , 2012, 149(6): 1368-1380. [43] Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, Balasubramanian S. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science , 2012, 336(6083): 934-937. [44] Booth MJ, Ost TWB, Beraldi D, Bell NM, Branco MR, Reik W, Balasubramanian S. Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc , 2013, 8(10): 1841-1851. [45] Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods , 2010, 7(6): 461-465. [46] Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, De Winter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong XX, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma CC, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S. Real-time DNA sequencing from single polymerase molecules. Science , 2009, 323(5910): 133-138. [47] Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, Nusbaum C, Jaffe DB. Characterizing and measuring bias in sequence data. Genome Biol , 2013, 14(5): R51. [48] Song CX, Clark TA, Lu XY, Kislyuk A, Dai Q, Turner SW, He C, Korlach J. Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat Methods , 2012, 9(1): 75-77. [49] Clark TA, Lu XY, Luong K, Dai Q, Boitano M, Turner SW, He C, Korlach J. Enhanced 5-methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation. BMC Biol , 2013, 11: 4. [50] Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang XH, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA. The potential and challenges of nanopore sequencing. Nat Biotechnol , 2008, 26(10): 1146-1153. [51] Wanunu M, Cohen-Karni D, Johnson RR, Fields L, Benner J, Peterman N, Zheng Y, Klein ML, Drndic M. Discrimination of methylcytosine from hydroxymethylcytosine in DNA molecules. J Am Chem Soc , 2011, 133(3): 486-492. [52] Laszlo AH, Derrington IM, Brinkerhoff H, Langford KW, Nova IC, Samson JM, Bartlett JJ, Pavlenok M, Gundlach JH. Detection and mapping of 5-methylcytosine and 5- hydroxymethylcytosine with nanopore MspA. Proc Natl Acad Sci USA , 2013, 110(47): 18904-18909. [53] Lu X, Song CX, Szulwach K, Wang Z, Weidenbacher P, Jin P, He C. Chemical modification-assisted bisulfite sequencing (CAB-seq) for 5-Carboxylcytosine detection in DNA. J Am Chem Soc , 2013, 135(25): 9315-9317. [54] Booth MJ, Marsico G, Bachman M, Beraldi D, Balasubramanian S. Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. Nat Chem , 2014, 6(5): 435-440. [55] Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L, Street C, Li YJ, Poidevin M, Wu H, Gao J, Liu P, Li L, Xu GL, Jin P, He C. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell , 2013, 153(3): 678-691. [56] Xia B, Han DL, Lu XY, Sun ZZ, Zhou AK, Yin QZ, Zeng H, Liu MH, Jiang X, Xie W, He C, Yi CQ. Bisulfite- free, base-resolution analysis of 5-formylcytosine at the genome scale. Nat Methods , 2015, 12(11): 1047-1050. [57] Wen L, Tang FC. Genomic distribution and possible functions of DNA hydroxymethylation in the brain. Genomics , 2014, 104(5): 341-346. |
[1] | 张競文,续倩,李国亮. 癌症发生发展中的表观遗传学研究[J]. 遗传, 2019, 41(7): 567-581. |
[2] | 马志鹏, 陈军. 无义突变与“遗传补偿效应”[J]. 遗传, 2019, 41(5): 359-364. |
[3] | 刘刚,孙飞舟,朱芳贤,冯海永,韩旭. 连续性纯合片段在畜禽基因组研究中的应用[J]. 遗传, 2019, 41(4): 304-317. |
[4] | 石田培,张莉. 全转录组学在畜牧业中的应用[J]. 遗传, 2019, 41(3): 193-205. |
[5] | 张香媛,何超,叶丙雨,谢德健,师明磊,张彦,沈文龙,李平,赵志虎. 全基因组染色质相互作用Hi-C文库制备的优化及其质量控制[J]. 遗传, 2017, 39(9): 847-855. |
[6] | 王建, 张凯翔, 芦国珍, 赵湘辉. 5-羟甲基胞嘧啶及其TET氧合酶在神经系统发育和相关疾病中的研究进展[J]. 遗传, 2017, 39(12): 1138-1149. |
[7] | 岳敏, 杨禹, 郭改丽, 秦曦明. 哺乳动物生物钟的遗传和表观遗传研究进展[J]. 遗传, 2017, 39(12): 1122-1137. |
[8] | 白东义, 赵一萍, 李蓓, 格日乐其木格, 张心壮, 芒来. 马属动物全基因组高通量测序研究进展[J]. 遗传, 2017, 39(11): 974-983. |
[9] | 李元丰, 韩玉波, 曹鹏博, 孟金凤, 李海北, 秦庚, 张锋, 靳光付, 杨勇, 邬玲仟, 平杰, 周钢桥. 2015年中国医学遗传学研究领域若干重要进展[J]. 遗传, 2016, 38(5): 363-390. |
[10] | 张笑, 贾桂芳. RNA表观遗传修饰:N6-甲基腺嘌呤[J]. 遗传, 2016, 38(4): 275-288. |
[11] | 刘振, 徐建红. 高通量测序技术在转座子研究中的应用[J]. 遗传, 2015, 37(9): 885-898. |
[12] | 陆才瑞, 邹长松, 宋国立. 高通量测序技术结合正向遗传学手段在基因定位研究中的应用[J]. 遗传, 2015, 37(8): 765-776. |
[13] | 孙凌云, 李星逾, 孙志为. 原发性肝癌的表观遗传学及其治疗[J]. 遗传, 2015, 37(6): 517-527. |
[14] | 刘欣, 张洁, 赵春晖, 李铁松, 王继红, 李庆伟. 日本七鳃鳗物种特异性microRNAs及其前体识别与验证[J]. 遗传, 2015, 37(3): 283-291. |
[15] | 任才芳,孙红艳,王立中,张国敏,樊懿萱,颜光耀,王丹,王锋. iPSCs遗传稳定性与重编程机制的研究进展[J]. 遗传, 2014, 36(9): 879-887. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: