遗传 ›› 2015, Vol. 37 ›› Issue (9): 885-898.doi: 10.16288/j.yczz.15-140
刘振, 徐建红
收稿日期:
2015-04-02
修回日期:
2015-05-14
出版日期:
2015-09-20
发布日期:
2015-09-20
通讯作者:
徐建红,博士,教授,研究方向:基因组学与分子生物学。E-mail: jhxu@zju.edu.cn
作者简介:
刘振,博士研究生,专业方向:作物遗传育种。E-mail: 13960797234@126.com 电话:010-64807669;传真:010-64807786
基金资助:
Zhen Liu, Jianhong Xu
Received:
2015-04-02
Revised:
2015-05-14
Online:
2015-09-20
Published:
2015-09-20
摘要: 高通量测序技术极大地提高了测序效率,大幅度降低了测序成本,同时该技术具有特异性好、灵敏度高、精确性高等优势,目前已被广泛应用于遗传变异、转录组学和表观组学等研究。近年来,高通量测序技术也逐渐应用于转座子的研究,并取得了丰硕的成果。本文主要综述了高通量测序技术在转座子研究中的应用,包括转座子含量估算、靶点偏好性及分布、多态性及群体频率、稀有转座子的鉴定、转座子的水平转移以及转座子标签技术中的应用等,并简要介绍了目前研究中采用的主要测序策略和算法,及其存在的利弊和相应的解决方案。最后对高通量测序技术,尤其是第三代测序技术的发展趋势和它们在转座子未来的研究中的应用进行了展望,以期为相关的科研人员提供一个全面的了解和参考。
刘振, 徐建红. 高通量测序技术在转座子研究中的应用[J]. 遗传, 2015, 37(9): 885-898.
Zhen Liu, Jianhong Xu. The application of the high throughput sequencing technology in the transposable elements[J]. HEREDITAS(Beijing), 2015, 37(9): 885-898.
[1] McClintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA , 1950, 36(6): 344-355. [2] Chénais B, Caruso A, Hiard S, Casse N. The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene , 2012, 509(1): 7-15. [3] Huang CRL, Burns KH, Boeke JD. Active transposition in genomes. Annu Rev Genet , 2012, 46: 651-675. [4] Vitte C, Fustier MA, Alix K, Tenaillon MI. The bright side of transposons in crop evolution. Brief Funct Genomics , 2014, 13(4): 276-295. [5] Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH. A unified classification system for eukaryotic transposable elements. Nat Rev Genet , 2007, 8(12): 973-982. [6] Wessler SR. Transposable elements and the evolution of eukaryotic genomes. Proc Natl Acad Sci USA , 2006, 103(47): 17600-17601. [7] Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet , 2007, 8(4): 272-285. [8] Ayarpadikannan S, Kim HS. The impact of transposable elements in genome evolution and genetic instability and their implications in various diseases. Genomics Inform , 2014, 12(3): 98-104. [9] Bennetzen JL, Wang H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol , 2014, 65: 505-530. [10] Gifford WD, Pfaff SL, Macfarlan TS. Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol , 2013, 23(5): 218-226. [11] Lee SI, Kim NS. Transposable elements and genome size variations in plants. Genomics Inform , 2014, 12(3): 87-97. [12] Sentmanat M, Wang SH, Elgin SCR. Targeting heterochromatin formation to transposable elements in Drosophila : potential roles of the piRNA system. Biochemistry (Mosc) , 2013, 78(6): 562-571. [13] 赵美霞, 张彪, 刘胜毅, 马渐新. 白菜和甘蓝基因组转座子表达及其对基因调控的潜在影响. 遗传, 2013, 35(8): 1014-1022. [14] Dean C, Sjodin C, Bancroft I, Lawson E, Lister C, Scofield S, Jones J. Development of an efficient transposon tagging system in Arabidopsis thaliana. Symp Soc Exp Biol , 1991, 45: 63-75. [15] Izawa T, Ohnishi T, Nakano T, Ishida N, Enoki H, Hashimoto H, Itoh K, Terada R, Wu C, Miyazaki C, Endo T, Iida S, Shimamoto K. Transposon tagging in rice. Plant Mol Biol , 1997, 35(1-2): 219-229. [16] Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, Schulman AH. Analysis of plant diversity with retrotransposon-based molecular markers. Heredity , 2011, 106(4): 520-530. [17] Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol , 2009, 25(4): 195-203. [18] Bennett S. Solexa Ltd. Pharmacogenomics , 2004, 5(4): 433-438. [19] Bentley DR. Whole-genome re-sequencing. Curr Opin Genet Dev , 2006, 16(6): 545-552. [20] Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen ZT, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu PG, Begley RF, Rothberg JM. Genome sequencing in microfabricated high-density picolitre reactors. Nature , 2005, 437(7057): 376-380. [21] Shendure J, Porreca GJ, Reppas NB, Lin XX, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM. Accurate multiplex polony sequencing of an evolved bacterial genome. Science , 2005, 309(5741): 1728-1732. [22] Korlach J, Bjornson KP, Chaudhuri BP, Cicero RL, Flusberg BA, Gray JJ, Holden D, Saxena R, Wegener J, Turner SW. Real-time DNA sequencing from single polymerase molecules. Methods Enzymol , 2010, 472: 431-455. [23] Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genet , 2011, 52(4): 413-435. [24] Kelly LJ, Leitch IJ. Exploring giant plant genomes with next-generation sequencing technology. Chromosome Res , 2011, 19(7): 939-953. [25] Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-generation sequencing revolution and its impact on genomics. Cell , 2013, 155(1): 27-38. [26] McGettigan PA. Transcriptomics in the RNA-seq era. Curr Opin Chem Biol , 2013, 17(1): 4-11. [27] Chabbert CD, Adjalley SH, Klaus B, Fritsch ES, Gupta I, Pelechano V, Steinmetz LM. A high-throughput ChIP- Seq for large-scale chromatin studies. Mol Syst Biol , 2015, 11(1): 777. [28] Song L, Crawford GE. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc , 2010, 2010(2): pdb.prot5384. [29] Zhao MT, Whyte JJ, Hopkins GM, Kirk MD, Prather RS. Methylated DNA immunoprecipitation and high-throughput sequencing (MeDIP-seq) using low amounts of genomic DNA. Cell Reprogram , 2014, 16(3): 175-184. [30] Stewart C, Kural D, Stromberg MP, Walker JA, Konkel MK, Stutz AM, Urban AE, Grubert F, Lam HY, Lee WP, Busby M, Indap AR, Garrison E, Huff C, Xing J, Snyder MP, Jorde LB, Batzer MA, Korbel JO, Marth GT. A comprehensive map of mobile element insertion polymorphisms in humans. PLoS Genet , 2011, 7(8): e1002236. [31] Lee E, Iskow R, Yang LX, Gokcumen O, Haseley P, Luquette LJ, III, Lohr JG, Harris CC, Ding L, Wilson RK, Wheeler DA, Gibbs RA, Kucherlapati R, Lee C, Kharchenko PV, Park PJ. Landscape of somatic retrotransposition in human cancers. Science , 2012, 337(6097): 967-971. [32] Gilbert C, Chateigner A, Ernenwein L, Barbe V, Bézier A, Herniou EA, Cordaux R. Population genomics supports baculoviruses as vectors of horizontal transfer of insect transposons. Nat Commun , 2014, 5: 3348. [33] Tian ZX, Zhao MX, She MY, Du JC, Cannon SB, Liu X, Xu X, Qi XP, Li MW, Lam HM, Ma JX. Genome- wide characterization of nonreference transposons reveals evolutionary propensities of transposons in soybean. Plant Cell , 2012, 24(11): 4422-4436. [34] Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W. Smallest angiosperm genomes found in lentibulariaceae, with chromosomes of bacterial size. Plant Biol , 2006, 8(6): 770-777. [35] Pellicer J, Fay MF, Leitch IJ. The largest eukaryotic genome of them all? Bot J Linn Soc , 2010, 164(1): 10-15. [36] Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis , a wild relative of rice. Genome Res , 2006, 16(10): 1262-1269. [37] SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL. Nested retrotransposons in the intergenic regions of the maize genome. Science , 1996, 274(5288): 765-768. [38] Moghe GD, Shiu SH. The causes and molecular consequences of polyploidy in flowering plants. Ann N Y Acad Sci , 2014, 1320: 16-34. [39] Weiss-Schneeweiss H, Emadzade K, Jang TS, Schneeweiss GM. Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet Genome Res , 2013, 140(2-4): 137-150. [40] 陈建军, 王瑛. 植物基因组大小进化的研究进展. 遗传, 2009, 31(5): 464-470. [41] Macas J, Neumann P, Navrátilová A. Repetitive DNA in the pea ( Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula . BMC Genomics , 2007, 8: 427. [42] Tenaillon MI, Hufford MB, Gaut BS, Ross-Ibarra J. Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians . Genome Biol Evol , 2011, 3: 219-229. [43] Hřibová E, Neumann P, Matsumoto T, Roux N, Macas J, Doležel J. Repetitive part of the banana ( Musa acuminata ) genome investigated by low-depth 454 sequencing. BMC Plant Biol , 2010, 10: 204. [44] Sabot F, Picault N, El-Baidouri M, Llauro C, Chaparro C, Piegu B, Roulin A, Guiderdoni E, Delabastide M, McCombie R, Panaud O. Transpositional landscape of the rice genome revealed by paired-end mapping of high-throughput re-sequencing data. Plant J , 2011, 66(2): 241-246. [45] Natali L, Cossu RM, Barghini E, Giordani T, Buti M, Mascagni F, Morgante M, Gill N, Kane NC, Rieseberg L, Cavallini A. The repetitive component of the sunflower genome as shown by different procedures for assembling next generation sequencing reads. BMC Genomics , 2013, 14: 686. [46] Wang QH, Dooner HK. Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci USA , 2006, 103(47): 17644-17649. [47] Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D'Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo NX, Luo MC, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KF, Edwards KJ, Bevan MW, Hall N. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature , 2012, 491(7426): 705-710. [48] Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, Schlub S, Le Paslier MC, Magdelenat G, Gonthier C, Couloux A, Budak H, Breen J, Pumphrey M, Liu SX, Kong XY, Jia JZ, Gut M, Brunel D, Anderson JA, Gill BS, Appels R, Keller B, Feuillet C. Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell , 2010, 22(6): 1686-1701. [49] Sergeeva EM, Afonnikov DA, Koltunova MK, Gusev VD, Miroshnichenko LA, Vrána J, Kubaláková M, Poncet C, Sourdille P, Feuillet C, Doležel J, Salina EA. Common wheat chromosome 5B composition analysis using low-coverage 454 sequencing. Plant Genome , 2014, 7(2): 16. [50] O'Hare K, Rubin GM. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell , 1983, 34(1): 25-35. [51] Mori I, Benian GM, Moerman DG, Waterston RH. Transposable element Tc1 of Caenorhabditis elegans recognizes specific target sequences for integration. Proc Natl Acad Sci USA , 1988, 85(3): 861-864. [52] Tudor M, Lobocka M, Goodell M, Pettitt J, O'Hare K. The pogo transposable element family of Drosophila melanogaster . Mol Gen Genet , 1992, 232(1): 126-134. [53] Berry C, Hannenhalli S, Leipzig J, Bushman FD. Selection of target sites for mobile DNA integration in the human genome. PLoS Comput Biol , 2006, 2(11): e157. [54] Levy A, Schwartz S, Ast G. Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements. Nucleic Acids Res , 2010, 38(5): 1515-1530. [55] Linheiro RS, Bergman CM. Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster. PLoS One , 2012, 7(2): e30008. [56] Jiang N, Bao Z, Temnykh S, Cheng Z, Jiang J, Wing RA, McCouch SR, Wessler SR. Dasheng: A recently amplified nonautonomous long terminal repeat element that is a major component of pericentromeric regions in rice. Genetics , 2002, 161(3): 1293-1305. [57] Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R. Role of transposable elements in heterochromatin and epigenetic control. Nature , 2004, 430(6998): 471-476. [58] Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang HB, Wang XY, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang LF, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob ur R, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS. The Sorghum bicolor genome and the diversification of grasses. Nature , 2009, 457(7229): 551-556. [59] Rizzon C, Marais G, Gouy M, Biémont C. Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome. Genome Res , 2002, 12(3): 400-407. [60] Schmutz J, Cannon SB, Schlueter J, Ma JX, Mitros T, Nelson W, Hyten DL, Song QJ, Thelen JJ, Cheng JL, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu SQ, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du JC, Tian ZX, Zhu LC, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA. Genome sequence of the palaeopolyploid soybean. Nature , 2010, 463(7278): 178-183. [61] Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK. Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet , 2007, 8(1): 77-84. [62] Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, Okumoto Y, Tanisaka T, Wessler SR. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature , 2009, 461(7267): 1130-1134. [63] Ewing AD, Kazazian HH. Whole-genome resequencing allows detection of many rare LINE-1 insertion alleles in humans. Genome Res , 2011, 21(6): 985-990. [64] Kumar A, Hirochika H. Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci , 2001, 6(3): 127-134. [65] Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JP, Hyvönen J. Advances in plant gene-targeted and functional markers: a review. Plant Methods , 2013, 9(1): 6. [66] Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W. Genetic distribution of Bare-1- like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet , 1997, 253(6): 687-694. [67] Syed NH, Sureshsundar S, Wilkinson MJ, Bhau BS, Cavalcanti JJV, Flavell AJ. Ty1-copia retrotransposon-based SSAP marker development in cashew ( Anacardium occidentale L.). Theor Appl Genet , 2005, 110(7): 1195-1202. [68] Kalendar R, Schulman AH. IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc , 2006, 1(5): 2478-2484. [69] Flavell AJ, Knox MR, Pearce SR, Ellis THN. Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J , 1998, 16(5): 643-650. [70] Monden Y, Fujii N, Yamaguchi K, Ikeo K, Nakazawa Y, Waki T, Hirashima K, Uchimura Y, Tahara M. Efficient screening of long terminal repeat retrotransposons that show high insertion polymorphism via high-throughput sequencing of the primer binding site. Genome , 2014, 57(5): 245-252. [71] Sveinsson S, Gill N, Kane NC, Cronk Q. Transposon fingerprinting using low coverage whole genome shotgun sequencing in cacao ( Theobroma cacao L.) and related species. BMC Genomics , 2013, 14: 502. [72] Hormozdiari F, Alkan C, Ventura M, Hajirasouliha I, Malig M, Hach F, Yorukoglu D, Dao P, Bakhshi M, Sahinalp SC, Eichler EE. Alu repeat discovery and characterization within human genomes. Genome Res , 2011, 21(6): 840-849. [73] Marchi E, Kanapin A, Magiorkinis G, Belshaw R. Unfixed endogenous retroviral insertions in the human population. J Virol , 2014, 88(17): 9529-9537. [74] Cridland JM, Macdonald SJ, Long AD, Thornton KR. Abundance and distribution of transposable elements in two Drosophila QTL mapping resources. Mol Biol Evol , 2013, 30(10): 2311-2327. [75] Nellåker C, Keane TM, Yalcin B, Wong K, Agam A, Belgard TG, Flint J, Adams DJ, Frankel WN, Ponting CP. The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Genome Biol , 2012, 13(6): R45. [76] Liu Z, Li XX, Wang TZ, Messing J, Xu JH. The Wukong terminal-repeat retrotransposon in miniature (TRIM) elements in diverse maize germplasm. G3 , 2015, doi:10.1534/g3.115.018317. [77] Fiston-Lavier AS, Carrigan M, Petrov DA, González J. T-lex: a program for fast and accurate assessment of transposable element presence using next-generation sequencing data. Nucleic Acids Res , 2011, 39(6): e36. [78] Robb SMC, Lu L, Valencia E, Burnette JM, Okumoto Y, Wessler SR, Stajich JE. The use of RelocaTE and unassembled short reads to produce high-resolution snapshots of transposable element generated diversity in rice. G3 , 2013, 3(6): 949-957. [79] Witherspoon DJ, Xing JC, Zhang YH, Watkins WS, Batzer MA, Jorde LB. Mobile element scanning (ME- Scan) by targeted high-throughput sequencing. BMC Genomics , 2010, 11: 410. [80] Hormozdiari F, Hajirasouliha I, Dao P, Hach F, Yorukoglu D, Alkan C, Eichler EE, Sahinalp SC. Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery. Bioinformatics , 2010, 26(12): i350-i357. [81] Wu JT, Lee WP, Ward A, Walker JA, Konkel MK, Batzer MA, Marth GT. Tangram: a comprehensive toolbox for mobile element insertion detection. BMC Genomics , 2014, 15: 795. [82] Kofler R, Betancourt AJ, Schlötterer C. Sequencing of pooled DNA samples (Pool-Seq) uncovers complex dynamics of transposable element insertions in Drosophila melanogaster. PLoS Genet , 2012, 8(1): e1002487. [83] Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF, Van Meir EG, Vertino PM, Devine SE. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell , 2010, 141(7): 1253-1261. [84] Schork NJ, Murray SS, Frazer KA, Topol EJ. Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev , 2009, 19(3): 212-219. [85] Cohen JC, Pertsemlidis A, Fahmi S, Esmail S, Vega GL, Grundy SM, Hobbs HH. Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. Proc Natl Acad Sci USA , 2006, 103(6): 1810-1815. [86] Zhu XF, Feng T, Li YL, Lu Q, Elston RC. Detecting rare variants for complex traits using family and unrelated data. Genet Epidemiol , 2010, 34(2): 171-187. [87] Helman E, Lawrence MS, Stewart C, Sougnez C, Getz G, Meyerson M. Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing. Genome Res , 2014, 24(7): 1053-1063. [88] Arokium H, Kamata M, Kim S, Kim N, Liang M, Presson AP, Chen IS. Deep sequencing reveals low incidence of endogenous LINE-1 retrotransposition in human induced pluripotent stem cells. PLoS One , 2014, 9(10): e108682. [89] Loreto ELS, Carareto CMA, Capy P. Revisiting horizontal transfer of transposable elements in Drosophila . Heredity , 2008, 100(6): 545-554. [90] Bartolomé C, Bello X, Maside X. Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes. Genome Biol , 2009, 10(2): R22. [91] Diao XM, Freeling M, Lisch D. Horizontal transfer of a plant transposon. PLoS Biol , 2006, 4(1): e5. [92] Roulin A, Piegu B, Wing RA, Panaud O. Evidence of multiple horizontal transfers of the long terminal repeat retrotransposon RIRE1 within the genus Oryza . Plant J , 2008, 53(6): 950-959. [93] Casse N, Bui QT, Nicolas V, Renault S, Bigot Y, Laulier M. Species sympatry and horizontal transfers of Mariner transposons in marine crustacean genomes. Mol Phylogenet Evol , 2006, 40(2): 609-619. [94] de Boer JG, Yazawa R, Davidson WS, Koop BF. Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids. BMC Genomics , 2007, 8: 422. [95] Novikova O, Śliwińska E, Fet V, Settele J, Blinov A, Woyciechowski M. CR1 clade of non-LTR retrotransposons from Maculinea butterflies (Lepidoptera: Lycaenidae): evidence for recent horizontal transmission. BMC Evol Biol , 2007, 7: 93. [96] Ray DA, Feschotte C, Pagan HJT, Smith JD, Pritham EJ, Arensburger P, Atkinson PW, Craig NL. Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus . Genome Res , 2008, 18(5): 717-728. [97] Wright DA, Voytas DF. Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res , 2002, 12(1): 122-131. [98] Gilbert C, Schaack S, Pace JK II, Brindley PJ, Feschotte C. A role for host-parasite interactions in the horizontal transfer of transposons across phyla. Nature , 2010, 464(7293): 1347-1350. [99] Kuraku S, Qiu H, Meyer A. Horizontal transfers of Tc1 elements between teleost fishes and their vertebrate parasites, lampreys. Genome Biol Evol , 2012, 4(9): 929-936. [100] Wallau GL, Ortiz MF, Loreto ELS. Horizontal transposon transfer in eukarya: detection, bias, and perspectives. Genome Biol Evol , 2012, 4(8): 801-811. [101] El Baidouri M, Carpentier MC, Cooke R, Gao DY, Lasserre E, Llauro C, Mirouze M, Picault N, Jackson SA, Panaud O. Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res , 2014, 24(5): 831-838. [102] Diao YP, Qi YM, Ma YJ, Xia A, Sharakhov I, Chen XG, Biedler J, Ling EJ, Tu ZJ. Next-generation sequencing reveals recent horizontal transfer of a DNA transposon between divergent mosquitoes. PLoS One , 2011, 6(2): e16743. [103] Klein BA, Tenorio EL, Lazinski DW, Camilli A, Duncan MJ, Hu LDT. Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis . BMC Genomics , 2012, 13: 578. [104] Williams-Carrier R, Stiffler N, Belcher S, Kroeger T, Stern DB, Monde RA, Coalter R, Barkan A. Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize. Plant J , 2010, 63(1): 167-177. [105] Cao Y, Rui B, Wellems DL, Li MX, Chen BB, Zhang DM, Pan WQ. Identification of piggyBac -mediated insertions in Plasmodium berghei by next generation sequencing. Malar J , 2013, 12(1): 287. [106] Brutnell TP. Transposon tagging in maize. Funct Integr Genomics , 2002, 2(1-2): 4-12. [107] Grandbastien MA, Spielmann A, Caboche M. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature , 1989, 337(6205): 376-380. [108] Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA , 1996, 93(15): 7783-7788. [109] Yamazaki M, Tsugawa H, Miyao A, Yano M, Wu J, Yamamoto S, Matsumoto T, Sasaki T, Hirochika H. The rice retrotransposon Tos17 prefers low-copy-number sequences as integration targets. Mol Genet Genomics , 2001, 265(2): 336-344. [110] Liu SZ, Dietrich CR, Schnable PS. DLA-based strategies for cloning insertion mutants: cloning the gl4 locus of maize using Mu transposon tagged alleles. Genetics , 2009, 183(4): 1215-1225. [111] Howard TP III, Hayward AP, Tordillos A, Fragoso C, Moreno MA, Tohme J, Kausch AP, Mottinger JP, Dellaporta SL. Identification of the maize gravitropism gene lazy plant1 by a transposon-tagging genome resequencing strategy. PLoS One , 2014, 9(1): e87053. [112] McCarty DR, Latshaw S, Wu S, Suzuki M, Hunter CT, Avigne WT, Koch KE. Mu-seq: sequence-based mapping and identification of transposon induced mutations. PLoS One , 2013, 8(10): e77172. [113] van Opijnen T, Bodi KL, Camilli A. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods , 2009, 6(10): 767-72. [114] Gawronski JD, Wong SMS, Giannoukos G, Ward DV, Akerley BJ. Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci USA , 2009, 106(38): 16422-16427. [115] Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD, Lozupone CA, Knight R, Gordon JI. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe , 2009, 6(3): 279-289. [116] Gallagher LA, Shendure J, Manoil C. Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq. MBio , 2011, 2(1): e00315-10. [117] van Opijnen T, Camilli A. Genome-wide fitness and genetic interactions determined by Tn-seq, a high- throughput massively parallel sequencing method for microorganisms. Curr Protoc Microbiol , 2015,36: 1e.3.1-1e.3.24. [118] Xing JC, Witherspoon DJ, Jorde LB. Mobile element biology: new possibilities with high-throughput sequencing. Trends Genet , 2013, 29(5): 280-289. [119] Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F, Brennan PM, Rizzu P, Smith S, Fell M, Talbot RT, Gustincich S, Freeman TC, Mattick JS, Hume DA, Heutink P, Carninci P, Jeddeloh JA, Faulkner GJ. Somatic retrotransposition alters the genetic landscape of the human brain. Nature , 2011, 479(7374): 534-537. [120] Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet , 2011, 12(5): 363-376. [121] Abel HJ, Duncavage EJ. Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. Cancer Genet , 2013, 206(12): 432-440. [122] Medvedev P, Stanciu M, Brudno M. Computational methods for discovering structural variation with next- generation sequencing. Nat Methods , 2009, 6(Suppl. 11): S13-S20. [123] Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, Kim PM, Palejev D, Carriero NJ, Du L, Taillon BE, Chen ZT, Tanzer A, Saunders AC, Chi JX, Yang FT, Carter NP, Hurles ME, Weissman SM, Harkins TT, Gerstein MB, Egholm M, Snyder M. Paired-end mapping reveals extensive structural variation in the human genome. Science , 2007, 318(5849): 420-426. [124] Keane TM, Wong K, Adams DJ. RetroSeq: transposable element discovery from next-generation sequencing data. Bioinformatics , 2013, 29(3): 389-390. [125] Quinlan AR, Clark RA, Sokolova S, Leibowitz ML, Zhang YJ, Hurles ME, Mell JC, Hall IM. Genome-wide mapping and assembly of structural variant breakpoints in the mouse genome. Genome Res , 2010, 20(5): 623-635. [126] Fan X, Abbott TE, Larson D, Chen K. BreakDancer-Identification of genomic structural variation from paired-end read mapping. Current Protocols in Bioinformatics ,2014,15(6):1-11. [127] [127] Bailey JA, Gu ZP, Clark RA, Reinert K, Samonte RV, Schwartz S, Adams MD, Myers EW, Li PW, Eichler EE. Recent segmental duplications in the human genome. Science , 2002, 297(5583): 1003-1007. [128] Dohm JC, Lottaz C, Borodina T, Himmelbauer H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res , 2008, 36(16): e105. [129] Rozowsky J, Euskirchen G, Auerbach RK, Zhang ZD, Gibson T, Bjornson R, Carriero N, Snyder M, Gerstein MB. PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol , 2009, 27(1): 66-75. [130] Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA. A map of human genome variation from population-scale sequencing. Nature , 2010, 467(7319): 1061-1073. [131] Glenn TC. Field guide to next-generation DNA sequencers. Mol Ecol Resour , 2011, 11(5): 759-769. [132] Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol Genet , 2010, 19(R2): R227-R240. |
[1] | 梁文权,侯豫,赵存友. 精神分裂症相关单核苷酸多态性调控microRNA功能研究进展[J]. 遗传, 2019, 41(8): 677-685. |
[2] | 张晴,平杰,张昊翔,康波,李元丰,周钢桥. MKL1基因多态性与高原环境适应性的遗传关联研究[J]. 遗传, 2019, 41(7): 634-643. |
[3] | 刘刚,孙飞舟,朱芳贤,冯海永,韩旭. 连续性纯合片段在畜禽基因组研究中的应用[J]. 遗传, 2019, 41(4): 304-317. |
[4] | 石田培,张莉. 全转录组学在畜牧业中的应用[J]. 遗传, 2019, 41(3): 193-205. |
[5] | 张婕妤,初亚男,邹秉杰,张晏洁,封利颖. 基于级联核酸侵入反应的real-time PCR法检测咽拭子样本中UGT1A1*6基因多态性[J]. 遗传, 2018, 40(8): 668-675. |
[6] | 胡广东,郝科兴,黄涛,曾维斌,谷新利,王静. 绵羊高效转基因通用型piggyBac转座子载体构建及功能验证[J]. 遗传, 2018, 40(8): 647-656. |
[7] | 刘启鹏, 安妮, 岑山, 李晓宇. piRNA抑制基因转座的分子机制[J]. 遗传, 2018, 40(6): 445-450. |
[8] | 彭哲也,唐紫珺,谢民主. 机器学习方法在基因交互作用探测中的研究进展[J]. 遗传, 2018, 40(3): 218-226. |
[9] | 刘莉莉, 郭爱伟, 吴培福, 陈粉粉, 杨亚晋, 张勤. 敲降VPS28基因对中国荷斯坦奶牛乳脂合成的调控[J]. 遗传, 2018, 40(12): 1092-1100. |
[10] | 张香媛,何超,叶丙雨,谢德健,师明磊,张彦,沈文龙,李平,赵志虎. 全基因组染色质相互作用Hi-C文库制备的优化及其质量控制[J]. 遗传, 2017, 39(9): 847-855. |
[11] | 杨熳,卢冰婕,段媛媛,陈晓峰,马建岗,郭燕. 骨质疏松症易感基因BDNF的遗传学关联分析及功能研究[J]. 遗传, 2017, 39(8): 726-736. |
[12] | 张统雨,朱才业,杜立新,赵福平. 羊重要性状全基因组关联分析研究进展[J]. 遗传, 2017, 39(6): 491-500. |
[13] | 王诗铭, 宋晓, 赵雪莹, 陈红岩, 王久存, 吴俊杰, 高志强, 钱吉, 白春学, 李强, 韩宝惠, 卢大儒. 自噬通路基因多态性与晚期非小细胞肺癌含铂化疗疗效的相关性分析[J]. 遗传, 2017, 39(3): 250-262. |
[14] | 蓝洋,胡江涛,张玉娟. 化学计量基因组学研究进展[J]. 遗传, 2017, 39(2): 89-97. |
[15] | 白东义, 赵一萍, 李蓓, 格日乐其木格, 张心壮, 芒来. 马属动物全基因组高通量测序研究进展[J]. 遗传, 2017, 39(11): 974-983. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: