[1] Cohen ML. Epidemiology of drug resistance: implications for a post-antimicrobial era. Science , 1992, 257(5073): 1050-1055. [2] Livermore DM. Discovery research: the scientific challenge of finding new antibiotics. J Antimicrob Chemother , 2011, 66(9): 1941-1944. [3] Marshall DA, McGeer A, Gough J, Grootendorst P, Buitendyk M, Simonyi S, Green K, Jaszewski B, MacLeod SM, Low DE. Impact of antibiotic administrative restrictions on trends in antibiotic resistance. Can J Public Health , 2006, 97(2): 126-131. [4] Guo W, He Q, Wang ZY, Wei M, Yang ZW, Du Y, Wu C, He J. Influence of antimicrobial consumption on gram- negative bacteria in inpatients receiving antimicrobial resistance therapy from 2008-2013 at a tertiary hospital in Shanghai, China. Am J Infect Control , 2015, 43(4): 358-364. [5] Bergman M, Huikko S, Pihlajamäki M, Laippala P, Palva E, Huovinen P, Seppälä H. Effect of macrolide consumption on erythromycin resistance in Streptococcus pyogenes in Finland in 1997-2001. Clin Infect Dis , 2004, 38(9): 1251-1256. [6] Bergman M, Nyberg ST, Huovinen P, Paakkari P, Hakanen AJ, the Finnish Study Group for Antimicrobial Resistance. Association between antimicrobial consumption and resistance in Escherichia coli . Antimicrob Agents Chemother , 2009, 53(3): 912-917. [7] Malik M, Li LP, Zhao XL, Kerns RJ, Berger JM, Drlica K. Lethal synergy involving bicyclomycin: an approach for reviving old antibiotics. J Antimicrob Chemother , 2014, 69(12): 3227-3235. [8] Long QX, Du QL, Fu TW, Drlica K, Zhao XL, Xie JP. Involvement of Holliday junction resolvase in fluoroquinolone- mediated killing of Mycobacterium smegmatis. Antimicrob Agents Chemother , 2015, 59(3): 1782-1785. [9] Kohanski MA, DePristo MA, Collins JJ. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell , 2010, 37(3): 311-320. [10] Alekshun MN, Levy SB. The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol , 1999, 7(10): 410-413. [11] Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell , 2007, 130(5): 797-810. [12] Rajendran M. Quinones as photosensitizer for photodynamic therapy: ROS generation, mechanism and detection methods. Photodiagnosis Photodyn Ther , 2016, 13: 175-187. [13] Huang XW, Zhao Q, Chen DZ, Zhang LS. Mutations in the D-loop region of mitochondrial DNA and the ROS level in the tissue of Hepatocellular Carcinoma. Hereditas ( Beijing ), 2005, 27(1): 14-20. 黄学文, 赵琪, 陈道桢, 张丽珊. 肝癌组织中线粒体DNA D-Loop区碱基变异与ROS水平. 遗传, 2005, 27(1): 14-20. [14] Sakai A, Nakanishi M, Yoshiyama K, Maki H. Impact of reactive oxygen species on spontaneous mutagenesis in Escherichia coli . Genes Cells , 2006, 11(7): 767-778. [15] Dwyer DJ, Kohanski MA, Collins JJ. Role of reactive oxygen species in antibiotic action and resistance. Curr Opin Microbiol , 2009, 12(5): 482-489. [16] Korshunov S, Imlay JA. Detection and quantification of superoxide formed within the periplasm of Escherichia coli . J Bacteriol , 2006, 188(17): 6326-6334. [17] Seaver LC, Imlay JA. Are respiratory enzymes the primary sources of intracellular hydrogen peroxide? J Biol Chem , 2004, 279(47): 48742-48750. [18] Lobritz MA, Belenky P, Porter CBM, Gutierrez A, Yang JH, Schwarz EG, Dwyer DJ, Khalil AS, Collins JJ. Antibiotic efficacy is linked to bacterial cellular respiration. Proc Natl Acad Sci USA , 2015, 112(27): 8173-8180. [19] Goswami M, Mangoli SH, Jawali N. Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli . Antimicrob Agents Chemother , 2006, 50(3): 949-954. [20] Goswami M, Mangoli SH, Jawali N. Effects of glutathione and ascorbic acid on streptomycin sensitivity of Escherichia coli . Antimicrob Agents Chemother , 2007, 51(3): 1119-1122. [21] Seaver LC, Imlay JA. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli . J Bacteriol , 2001, 183(24): 7173-7181. [22] Belenky P, Ye JD, Porter CBD, Cohen NR, Lobritz MA, Ferrante T, Jain S, Korry BJ, Schwarz EG, Walker GC, Collins JJ. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep , 2015, 13(5): 968-980. [23] Xie LX, Yu ZX, Guo SY, Li P, Abdalla AE, Xie JP. The roles of epigenetics and protein post-translational modifications in bacterial antibiotic resistance. Hereditas ( Beijing ), 2015, 37(8): 793-800. 谢龙祥, 于召箫, 郭思瑶, 李萍, Abdalla AE, 谢建平. 表观遗传和蛋白质翻译后修饰在细菌耐药中的作用. 遗传, 2015, 37(8): 793-800. [24] Cattoir V. Efflux-mediated antibiotics resistance in bacteria. Pathol Biol ( Paris ), 2004, 52(10): 607-616. [25] Webber MA, Piddock LJV. Absence of mutations in marRAB or soxRS in acrB -overexpressing fluoroquinolone- resistant clinical and veterinary isolates of Escherichia coli . Antimicrob Agents Chemother , 2001, 45(5): 1550-1552. [26] Rosner JL, Martin RG. An excretory function for the Escherichia coli outer membrane pore TolC: upregulation of marA and soxS transcription and Rob activity due to metabolites accumulated in tolC mutants. J Bacteriol , 2009, 191(16): 5283-5292. [27] Greenberg JT, Chou JH, Monach PA, Demple B. Activation of oxidative stress genes by mutations at the soxQ/cfxB/marA locus of Escherichia coli . J Bacteriol , 1991, 173(14): 4433-4439. [28] Wu J, Weiss B. Two divergently transcribed genes, soxR and soxS , control a superoxide response regulon of Escherichia coli . J Bacteriol , 1991, 173(9): 2864-2871. [29] Barbosa TM, Levy SB. Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J Bacteriol , 2000, 182(12): 3467-3474. [30] Ruiz C, Levy SB. Many chromosomal genes modulate MarA-mediated multidrug resistance in Escherichia coli . Antimicrob Agents Chemother , 2010, 54(5): 2125-2134. [31] Blanchard JL, Wholey WY, Conlon EM, Pomposiello PJ. Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and independent transcriptional networks. PLoS One , 2007, 2(11): e1186. [32] Mosel M, Li LP, Drlica K, Zhao XL. Superoxide-mediated protection of Escherichia coli from Antimicrobials . Antimicrob Agents Chemother , 2013, 57(11): 5755-5759. [33] Foti JJ, Devadoss B, Winkler JA, Collins JJ, Walker GC. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science , 2012, 336(6079): 315-319. [34] Liu YL, Zhou JA, Qu YL, Yang XG, Shi GJ, Wang XH, Hong YZ, Drlica K, Zhao XL. Resveratrol antagonizes antimicrobial lethality and stimulates recovery of bacterial mutants. PLoS One , 2016, 11(4): e0153023. [35] Wise EM Jr, Park JT. Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis. Proc Natl Acad Sci USA , 1965, 54(1): 75-81. [36] Tipper DJ, Strominger JL. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci USA , 1965, 54(4): 1133-1141. [37] Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol , 2010, 8(6): 423-435. [38] Drlica K, Malik M, Kerns RJ, Zhao XL. Quinolone- mediated bacterial death. Antimicrob Agents Chemother , 2008, 52(2): 385-392. [39] Malik M, Hussain S, Drlica K. Effect of anaerobic growth on quinolone lethality with Escherichia coli . Antimicrob Agents Chemother , 2007, 51(1): 28-34. [40] Lewin CS, Morrissey I, Smith JT. The mode of action of quinolones: the paradox in activity of low and high concentrations and activity in the anaerobic environment. Eur J Clin Microbiol Infect Dis , 1991, 10(4): 240-248. [41] Wang XH, Zhao XL. Contribution of oxidative damage to antimicrobial lethality. Antimicrob Agents Chemother , 2009, 53(4): 1395-1402. [42] Kohanski MA, Dwyer DJ, Wierzbowski J, Cottarel G, Collins JJ. Mistranslation of membrane proteins and two-component system activation trigger antibiotic- mediated cell death. Cell , 2008, 135(4): 679-690. [43] Davies BW, Kohanski MA, Simmons LA, Winkler JA, Collins JJ, Walker GC. Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli . Mol Cell , 2009, 36(5): 845-860. [44] Dorsey-Oresto A, Lu T, Mosel M, Wang XH, Salz T, Drlica K, Zhao XL. YihE kinase is a central regulator of programmed cell death in bacteria. Cell Rep , 2013, 3(2): 528-537. [45] Gusarov I, Shatalin K, Starodubtseva M, Nudler E. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science , 2009, 325(5946): 1380-1384. [46] Shatalin K, Shatalina E, Mironov A, Nudler E. H 2 S: a universal defense against antibiotics in bacteria. Science , 2011, 334(6058): 986-990. [47] Becerra MC, Albesa I. Oxidative stress induced by ciprofloxacin in Staphylococcus aureus . Biochem Biophys Res Commun , 2002, 297(4): 1003-1007. [48] Albesa I, Becerra MC, Battán PC, Páez PL. Oxidative stress involved in the antibacterial action of different antibiotics. Biochem Biophys Res Commun , 2004, 317(2): 605-609. [49] Becerra MC, Páez PL, Laróvere LE, Albesa I. Lipids and DNA oxidation in Staphylococcus aureus as a consequence of oxidative stress generated by ciprofloxacin. Mol Cell Biochem , 2006, 285(1-2): 29-34. [50] Zhao XL, Drlica K. Reactive oxygen species and the bacterial response to lethal stress. Curr Opin Microbiol , 2014, 21: 1-6. [51] Wang XH, Zhao XL, Malik M, Drlica K. Contribution of reactive oxygen species to pathways of quinolone- mediated bacterial cell death. J Antimicrob Chemother , 2010, 65(3): 520-524. [52] Liu YY, Imlay JA. Cell death from antibiotics without the involvement of reactive oxygen species. Science , 2013, 339(6124): 1210-1213. [53] Keren I, Wu YX, Inocencio J, Mulcahy LR, Lewis K. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science , 2013, 339(6124): 1213-1216. [54] Ezraty B, Vergnes A, Banzhaf M, Duverger Y, Huguenot A, Brochado AR, Su SY, Espinosa L, Loiseau L, Py B, Typas A, Barras F. Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway. Science , 2013, 340(6140): 1583-1587. [55] Lewis K. Persister cells. Annu Rev Microbiol , 2010, 64(1): 357-372. [56] Hempel SL, Buettner GR, O'Malley YQ, Wessels DA, Flaherty DM. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2', 7'- dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy- 2', 7'-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med , 1999, 27(1-2): 146-159. [57] Dwyer DJ, Belenky PA, Yang JH, MacDonald IC, Martell JD, Takahashi N, Chan CT, Lobritz MA, Braff D, Schwarz EG, Ye JD, Pati M, Vercruysse M, Ralifo PS, Allison KR, Khalil AS, Ting AY, Walker GC, Collins JJ. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc Natl Acad Sci USA , 2014, 111(20): E2100-E2109. [58] Zhao XL, Hong YZ, Drlica K. Moving forward with reactive oxygen species involvement in antimicrobial lethality. J Antimicrob Chemother , 2015, 70(3): 639-642. [59] Outten FW. Iron-sulfur clusters as oxygen-responsive molecular switches. Nat Chem Biol , 2007, 3(4): 206-207. [60] Miller HK, Auerbuch V. Bacterial iron-sulfur cluster sensors in mammalian pathogens. Metallomics , 2015, 7(6): 943-956. [61] Blanchard JL, Wholey WY, Conlon EM, Pomposiello PJ. Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and independent transcriptional networks. PLoS One , 2007, 2(11): e1186. (责任编委: 谢建平) |