[1] | Burke B, Stewart CL . Functional architecture of the cell's nucleus in development, aging, and disease. Curr Top Dev Biol, 2014,109:1-52. [DOI] | [2] | Gruenbaum Y, Foisner R . Lamins: Nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem, 2015,84:131-164. [DOI] | [3] | Gruenbaum Y, Medalia O . Lamins: The structure and protein complexes. Curr Opin Cell Biol, 2015,32:7-12. [DOI] | [4] | Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PCDP, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE . Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science, 2013,341(6149):1240104. [DOI] | [5] | Davidson PM, Denais C, Bakshi MC, Lammerding J . Nuclear deformability constitutes a rate-limiting step during cell migration in 3-D environments. Cell Mol Bioeng, 2014,7(3):293-306. [DOI] | [6] | Kohsaka S, Saito T, Akaike K, Suehara Y, Hayashi T, Takagi T, Kaneko K, Ueno T, Kojima S, Kohashi KI, Mano H, Oda Y, Yao T . Pediatric soft tissue tumor of the upper arm with LMNA-NTRK1 fusion. Hum Pathol, 2018,72:167-173. [DOI] | [7] | Sakthivel KM, Sehgal P . A novel role of lamins from genetic disease to cancer biomarkers. Oncol Rev, 2016,10(2):309. [DOI] | [8] | Butin-Israeli V, Adam SA, Goldman AE, Goldman RD . Nuclear lamin functions and disease. Trends Genet, 2012,28(9):464-471. [DOI] | [9] | Worman HJ, Fong LG, Muchir A, Young SG . Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest, 2009,119(7):1825-1836. [DOI] | [10] | Gordon LB, Rothman FG, López-Otín C, Misteli T . Progeria: A paradigm for translational medicine. Cell, 2014,156(3):400-407. [DOI] | [11] | Gonzalo S, Kreienkamp R . DNA repair defects and genome instability in Hutchinson-Gilford Progeria Syndrome. Curr Opin Cell Biol, 2015,34:75-83. [DOI] | [12] | Vidak S, Foisner R . Molecular insights into the premature aging disease progeria. Histochem Cell Biol, 2016,145(4):401-417. [DOI] | [13] | Rodríguez S, Eríksson M . Low and high expressing alleles of the LMNA gene: Implications for laminopathy disease development. PLoS One, 2011,6(9):e25472. [DOI] | [14] | Vigouroux C, Guénantin AC, Vatier C, Capel E, Le Dour C, Afonso P, Bidault G, Béréziat V, Lascols O, Capeau J, Briand N, Jéru I . Lipodystrophic syndromes due to LMNA mutations: Recent developments on biomolecular aspects, pathophysiological hypotheses and therapeutic perspectives. Nucleus, 2018,9(1):251-264. [DOI] | [15] | Cenni V, D'Apice MR, Ga |
[1] |
王秉政, 张超, 张佳丽, 孙锦. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45(7): 593-601. |
[2] |
刘梅珍, 王立人, 李咏梅, 马雪云, 韩红辉, 李大力. 利用CRISPR/Cas9技术构建基因编辑大鼠模型[J]. 遗传, 2023, 45(1): 78-87. |
[3] |
张潇筠, 徐坤, 沈俊岑, 穆璐, 钱泓润, 崔婕妤, 马宝霞, 陈知龙, 张智英, 魏泽辉. 一种新型提高HDR效率的CRISPR/Cas9-Gal4BD供体适配基因编辑系统[J]. 遗传, 2022, 44(8): 708-719. |
[4] |
张充, 魏子璇, 王敏, 陈瑶生, 何祖勇. 利用CRISPR/Cas9在人类黑色素瘤细胞中编辑MC1R与功能分析[J]. 遗传, 2022, 44(7): 581-590. |
[5] |
刘尧, 周先辉, 黄舒泓, 王小龙. 引导编辑:突破碱基编辑类型的新技术[J]. 遗传, 2022, 44(11): 993-1008. |
[6] |
肖诚, 刘洁颖, 杨春如, 于淼. LMNA基因突变相关脂肪萎缩综合征的研究进展[J]. 遗传, 2022, 44(10): 913-925. |
[7] |
韩玉婷, 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-14. |
[8] |
杨光武, 田嫄. 果蝇F-box基因Ppa促进脂肪储存[J]. 遗传, 2021, 43(6): 615-622. |
[9] |
彭定威, 李瑞强, 曾武, 王敏, 石翾, 曾检华, 刘小红, 陈瑶生, 何祖勇. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. |
[10] |
王娜, 甲芝莲, 吴强. RFX5调控原钙粘蛋白α基因簇的表达[J]. 遗传, 2020, 42(8): 760-774. |
[11] |
李国玲, 杨善欣, 吴珍芳, 张献伟. 提高CRISPR/Cas9介导的动物基因组精确插入效率 研究进展[J]. 遗传, 2020, 42(7): 641-656. |
[12] |
陈赢男, 陆静. CRISPR/Cas9系统在林木基因编辑中的应用[J]. 遗传, 2020, 42(7): 657-668. |
[13] |
刘思远, 易国强, 唐中林, 陈斌. 基于CRISPR/Cas9系统在全基因组范围内筛选功能基因及调控元件研究进展[J]. 遗传, 2020, 42(5): 435-443. |
[14] |
鲍莉雯, 周一叶, 曾凡一. 基于CRISPR/Cas9技术的β-地中海贫血和血友病基因治疗研究进展[J]. 遗传, 2020, 42(10): 949-964. |
[15] |
林珉婷, 赖璐璐, 赵淼, 林必玮, 姚香平. 利用CRISPR/Cas9 AAV系统构建纹状体Slc20a2基因敲除小鼠模型[J]. 遗传, 2020, 42(10): 1017-1027. |
|