遗传 ›› 2020, Vol. 42 ›› Issue (7): 641-656.doi: 10.16288/j.yczz.20-056
收稿日期:
2020-03-04
修回日期:
2020-04-24
出版日期:
2020-07-20
发布日期:
2020-06-01
通讯作者:
张献伟
E-mail:zxianw@163.com
作者简介:
李国玲,在读博士研究生,专业方向:基因编辑。E-mail: 792268184@qq.com
基金资助:
Guoling Li1, Shanxin Yang1, Zhenfang Wu1,2, Xianwei Zhang2()
Received:
2020-03-04
Revised:
2020-04-24
Online:
2020-07-20
Published:
2020-06-01
Contact:
Zhang Xianwei
E-mail:zxianw@163.com
Supported by:
摘要:
基因编辑技术是指通过人为方式在基因组插入、缺失或替换特定碱基,对遗传物质进行精确修饰和定向编辑的一种技术。近年来,锌指核酸内切酶(zinc-finger endonuclease, ZFN)、类转录激活因子效应物核酸酶(transcription activator-like effector nuclease, TALEN)、成簇规律间隔短回文重复序列及其相关系统(clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9, CRISPR/Cas9)等基因编辑技术的出现,使特异性靶向修饰动物基因组序列成为可能。虽然利用CRISPR/Cas9等基因编辑工具可以在细胞基因组高效产生双链断裂(double-strand breaks, DSB),但利用同源定向修复(homology directed repair, HDR)介导的精确插入(knock in, KI)效率却十分低下。本文结合当前基因编辑技术的发展现状,对目前提高CRISPR/Cas9介导的动物基因组KI策略进行了综述,以期为人类疾病模型制备、基因治疗和家畜遗传改良等提供借鉴。
李国玲, 杨善欣, 吴珍芳, 张献伟. 提高CRISPR/Cas9介导的动物基因组精确插入效率
研究进展[J]. 遗传, 2020, 42(7): 641-656.
Guoling Li, Shanxin Yang, Zhenfang Wu, Xianwei Zhang. Recent developments in enhancing the efficiency of CRISPR/Cas9- mediated knock-in in animals[J]. Hereditas(Beijing), 2020, 42(7): 641-656.
表1
小分子化合物对CRISRR/Cas9介导的KI效率的影响"
小分子化合物 | 细胞类型 | 浓度(µmol/L) | 供体模板 | KI效率 | 参考文献 |
---|---|---|---|---|---|
Scr7 (NHEJ抑制剂) | 家兔胚胎 | 40 | dsDNA | None | [ |
A549、MelJuSo、小鼠受精卵 | 0.01、1、1 | dsDNA、ssODN | 2~19倍 | [ | |
HEK293 | 1 | dsDNA | 5倍 | [ | |
hiPSCs | 1 | dsDNA | None | [ | |
HEK293T | 10 | dsDNA | None | [ | |
PFFs | 100 | dsDNA | 1.9倍 | [ | |
HEK293A | 1 | dsDNA | None | [ | |
HEK293T | 1 | dsDNA | 1.8倍 | [ | |
CHO | 0.1~20 | dsDNA | None | [ | |
PFFs | 5 | dsDNA | None | [ | |
小鼠受精卵 | 50 | ssODN | 9.7倍 | [ | |
斑马鱼胚胎 | 20 | dsDNA、ssODN | 2.5~3.7倍 | [ | |
PFFs | 1 | ssODN | None | [ | |
hiPSCs | 1 | ssODN | None | [ | |
L755507 (机理不清楚) | hiPSCs | 5 | dsDNA | None | [ |
PFFs | 40 | dsDNA | 1.9倍 | [ | |
mESCs、HUVEC、 K562、Hela、FCRL-2097、NSCs、hiPSCs | 5 | dsDNA、ssODN | 1.3~8.9倍 | [ | |
HEK293A | 5 | dsDNA | None | [ | |
hiPSCs | 5 | ssODN | None | [ | |
hiPSCs | 5 | ssODN | 1.8倍 | [ | |
hiPSCs | NA | ssODN | None | [ | |
斑马鱼胚胎 | 2 | ssODN | None | [ | |
RS-1 (HDR激活剂) | 家兔胚胎 | 7.5 | dsDNA | 2~5倍 | [ |
hiPSCs | 10 | dsDNA | None | [ | |
HEK293A、U2OS | 20 | dsDNA | 3~6倍 | [ | |
斑马鱼胚胎 | 20 | dsDNA | 1.6倍 | [ | |
hiPSCs | 1 | ssODN | None | [ | |
斑马鱼胚胎 | 100 | ssODN | None | [ | |
Nocodazole (细胞周期阻滞) | hiPSCs | 0.10 | dsDNA | 1.5倍 | [ |
HEK293T、HFF、hESCs | 0.20 | ssODN | 提高至38% | [ | |
hiPSCs | 1 | dsDNA | 3.8~5.8倍 | [ | |
HEK293T | 0.10 | dsDNA、ssODN | None | [ | |
PFFs | 1 | dsDNA | 2.8倍 | [ |
[1] | Wang KK, Tang XC, Liu Y, Xie ZC, Zou XD, Li MJ, Yuan HM, Ouyang HS, Jiao HP, Pang DX . Efficient generation of orthologous point mutations in pigs via CRISPR-assisted ssODN-mediated homology-directed repair. Mol Ther Nucleic Acids, 2016,5(11):e396. |
[2] | Song J, Yang DS, Xu J, Zhu TQ, Chen YE, Zhang JF . RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun, 2016,7:10548. |
[3] | Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, Zhao HY, Wang Y, Kan YA, Shrock E, Lesha E, Wang G, Luo YL, Qing YB, Jiao DL, Zhao H, Zhou XY, Wang SQ, Wei H, Güell M, Church GM, Yang LH . Inactivation of porcine endogenous retrovirus in pigs using CRISPR- Cas9. Science, 2017,357(6357):1303-1307. |
[4] | Komor AC, Badran AH, Liu DR . CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell, 2017,168(1-2):20-36. |
[5] | Gao YP, Wu HB, Wang YS, Liu X, Chen LL, Li Q, Cui CC, Liu X, Zhang JC, Zhang Y . Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol, 2017,18(1):13. |
[6] | Chen YC, Zheng YH, Kang Y, Yang WL, Niu YY, Guo XY, Tu ZC, Si CY, Wang H, Xing RX, Pu XQ, Yang SH, Li SH, Ji WZ, Li XJ . Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum Mol Genet, 2015,24(13):3764-3774. |
[7] | Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL . Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol, 2015,33(5):538-542. |
[8] | Wah DA, Bitinaite J, Schildkraut I, Aggarwal AK . Structure of Fok I has implications for DNA cleavage. Proc Natl Acad Sci USA, 1998,95(18):10564-10569. |
[9] | Kim YG, Cha J, Chandrasegaran S . Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA, 1996,93(3):1156-1160. |
[10] | Moscou MJ, Bogdanove AJ . A simple cipher governs DNA recognition by TAL effectors. Science, 2009,326(5959):1501. |
[11] | Romer P, Recht S, Lahaye T . A single plant resistance gene promoter engineered to recognize multiple TAL effectors from disparate pathogens. Proc Natl Acad Sci USA, 2009,106(48):20526-20531. |
[12] | Osborn MJ, Starker CG, Mcelroy AN, Webber BR, Riddle MJ, Xia L, Defeo AP, Gabriel R, Schmidt M,von Kalle C,Carlson DF,Maeder ML,Joung JK,Wagner JE,Voytas DF,Blazar BR,Tolar J. TALEN-based gene correction for epidermolysis bullosa. Mol Ther, 2013,21(6):1151-1159. |
[13] | Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B . TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and Fok I DNA-cleavage domain. Nucleic Acids Res, 2011,39(1):359-372. |
[14] | Pickar-Oliver A, Gersbach CA . The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol, 2019,20(8):490-507. |
[15] | Komor AC, Badran AH, Liu DR . CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell, 2017,168(1-2):20-36. |
[16] | Doudna JA, Charpentier E . Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014,346(6213):1258096. |
[17] | Hsu PD, Lander ES, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157(6):1262-1278. |
[18] | Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F . Rationally engineered Cas9 nucleases with improved specificity. Science, 2016,351(6268):84-88. |
[19] | Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA . Enhanced proofreading governs CRISPR- Cas9 targeting accuracy. Nature, 2017,550(7676):407-410. |
[20] | Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, Lorenzin F, Prandi D, Romanel A, Demichelis F, Inga A, Cereseto A . A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol, 2018,36(3):265-271. |
[21] | Lee JK, Jeong E, Lee J, Jung M, Shin E, Kim YH, Lee K, Jung I, Kim D, Kim S, Kim JS . Directed evolution of CRISPR-Cas9 to increase its specificity. Nat Commun, 2018,9(1):3048. |
[22] | Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng ZL, Gonzales AP, Li ZY, Peterson RT, Yeh JR, Aryee MJ, Joung JK . Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015,523(7561):481-485. |
[23] | Hu JH, Miller SM, Geurts MH, Tang WX, Chen LW, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR . Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018,556(7699):57-63. |
[24] | Xu S, Cao SS, Zou BJ, Yue YY, Gu C, Chen X, Wang P, Dong XH, Xiang Z, Li K, Zhu MS, Zhao QS, Zhou GH . An alternative novel tool for DNA editing without target sequence limitation: the structure-guided nuclease. Genome Biol, 2016,17(1):186. |
[25] | Bin MS, Lee JM, Kang JG, Lee NE, Ha DI, Kim DY, Kim SH, Yoo K, Kim D, Ko JH, Kim YS . Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3'-overhang. Nat Commun, 2018,9(1):3651. |
[26] | Mali P, Yang LH, Esvelt KM, Aach J, Guell M, Dicarlo JE, Norville JE, Church GM . RNA-guided human genome engineering via Cas9. Science, 2013,339(6121):823-826. |
[27] | Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM . Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods, 2013,10(11):1116-1121. |
[28] | Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu XB, Makarova KS, Koonin EV, Sharp PA, Zhang F . In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015,520(7546):186-191. |
[29] | Yamada M, Watanabe Y, Gootenberg JS, Hirano H, Ran FA, Nakane T, Ishitani R, Zhang F, Nishimasu H, Nureki O . Crystal structure of the minimal Cas9 from Campylobacter jejuni reveals the molecular diversity in the CRISPR-Cas9 systems. Mol Cell, 2017,65(6):1109-1121. |
[30] | Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, Thomas BC, Doudna JA, Banfield JF . New CRISPR-Cas systems from uncultivated microbes. Nature, 2017,542(7640):237-241. |
[31] | Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR . Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016,533(7603):420-424. |
[32] | Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR . Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 2017,551(7681):464-471. |
[33] | Koblan LW, Doman JL, Wilson C, Levy JM, Tay T, Newby GA, Maianti JP, Raguram A, Liu DR . Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol, 2018,36(9):843-846. |
[34] | Rees HA, Liu DR . Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet, 2018,19(12):770-788. |
[35] | Ren YX, Xiao RD, Lou XM, Fang XD . Research advance and application in the gene therapy of gene editing technologies. Hereditas(Beijing), 2019,41(1):18-27. |
任云晓, 肖茹丹, 娄晓敏, 方向东 . 基因编辑技术及其在基因治疗中的应用. 遗传, 2019,41(1):18-28. | |
[36] | Zong Y, Gao CX . Progress on base editing systems. Hereditas(Beijing), 2019,41(9):777-800. |
宗媛, 高彩霞 . 碱基编辑系统研究进展. 遗传, 2019,41(9):777-800. | |
[37] | Li S, Yang YY, Qiu Y, Chen Y, Xu LW, Ding QR . Applications of genome editing tools in precision medicine research. Hereditas(Beijing), 2017,39(3):177-188. |
李爽, 杨圆圆, 邱艳, 陈彦好, 徐璐薇, 丁秋蓉 . 基因组编辑技术在精准医学中的应用. 遗传, 2017,39(03):177-188. | |
[38] | Gao YP, Wu HB, Wang YS, Liu X, Chen LL, Li Q, Cui CC, Liu X, Zhang JC, Zhang Y . Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol, 2017,18(1):13. |
[39] | Zheng QT, Lin J, Huang JJ, Zhang HY, Zhang R, Zhang XY, Cao CW, Hambly C, Qin GS, Yao J, Song RG, Jia QT, Wang X, Li YS, Zhang N, Piao ZY, Ye RC, Speakman JR, Wang HM, Zhou Q, Wang YF, Jin WZ, Zhao JG . Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc Natl Acad Sci USA, 2017,114(45):E9474-E9482. |
[40] | Hu SW, Qiao J, Fu Q, Chen CF, Ni W, Wujiafu S, Ma SW, Zhang H, Sheng JL, Wang PY, Wang DW, Huang J, Cao LJ, Ouyang HS . Transgenic shRNA pigs reduce susceptibility to foot and mouth disease virus infection. eLife, 2015,4:e06951. |
[41] | Yan S, Tu ZC, Liu ZM, Fan NN, Yang HM, Yang S, Yang WL, Zhao Y, Ouyang Z, Lai DC, Yang HQ, Li L, Liu QS, Shi H, Xu GQ, Zhao H, Wei HJ, Pei Z, Li SH, Lai LX, Li XJ . A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's disease. Cell, 2018,173(4):989-1002. |
[42] | Niu XR, Yin SM, Chen X, Shao TT, Li DL . Gene editing technology and its recent progress in disease therapy. Hereditas(Beijing), 2019,41(7):582-598. |
牛煦然, 尹树明, 陈曦, 邵婷婷, 李大力 . 基因编辑技术及其在疾病治疗中的研究进展. 遗传, 2019,41(7):582-598. | |
[43] | Qu L, Li HS, Jiang YH, Dong CS . The molecular mechanism of CRISPR/Cas9 system and its application in gene therapy of human diseases. Hereditas(Beijing), 2015,37(10):974-982. |
璩良, 李华善, 姜运涵, 董春升 . CRISPR/Cas9系统的分子机制及其在人类疾病基因治疗中的应用. 遗传, 2015,37(10):974-982. | |
[44] | Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E, Dargitz CT, Wright R, Khanna A, Gage FH, Verma IM . Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep, 2015,12(9):1385-1390. |
[45] | Howden SE, Maufort JP, Duffin BM, Elefanty AG, Stanley EG, Thomson JA . Simultaneous reprogramming and gene correction of patient fibroblasts. Stem Cell Reports, 2015,5(6):1109-1118. |
[46] | Chang CW, Lai YS, Westin E, Khodadadi-Jamayran A, Pawlik KM, Lamb LJ, Goldman FD, Townes TM . Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep, 2015,12(10):1668-1677. |
[47] | Yin H, Xue W, Chen SD, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG . Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol, 2014,32(6):551-553. |
[48] | Guan YT, Ma YL, Li Q, Sun ZL, Ma L, Wu LJ, Wang LR, Zeng L, Shao YJ, Chen YT, Ma N, Lu WQ, Hu KW, Han HH, Yu YH, Huang YH, Liu MY, Li DL . CRISPR/ Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med, 2016,8(5):477-488. |
[49] | Yang Y, Wang LL, Bell P, Mcmenamin D, He ZN, White J, Yu HW, Xu CY, Morizono H, Musunuru K, Batshaw ML, Wilson JM . A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol, 2016,34(3):334-338. |
[50] | Dewitt MA, Magis W, Bray NL, Wang TJ, Berman JR, Urbinati F, Heo SJ, Mitros T, Munoz DP, Boffelli D, Kohn DB, Walters MC, Carroll D, Martin DI, Corn JE . Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med, 2016,8(360):134r-360r. |
[51] | Wu YX, Liang D, Wang YH, Bai MZ, Tang W, Bao SM, Yan ZQ, Li DS, Li JS . Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 2013,13(6):659-662. |
[52] | Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li YQ, Fine EJ, Wu XB, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F . DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol, 2013,31(9):827-832. |
[53] | Stemmer M, Thumberger T, Del SKM, Wittbrodt J, Mateo JL . CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One, 2015,10(4):e0124633. |
[54] | Heigwer F, Kerr G, Boutros M . E-CRISP: fast CRISPR target site identification. Nat Methods, 2014,11(2):122-123. |
[55] | Li GL, Zhang XW, Wang HQ, Mo JX, Zhong CL, Shi JS, Zhou R, Li ZC, Yang HQ, Wu ZF, Liu DW . CRISPR/ Cas9-mediated integration of large transgene into pig CEP112 locus. G3 (Bethesda), 2020,10(2):467-473. |
[56] | Liu B, Chen SW, Rose A, Chen D, Cao FY, Zwinderman M, Kiemel D, Aissi M, Dekker FJ, Haisma HJ . Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing. Nucleic Acids Res, 2020,48(2):517-532. |
[57] | Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U . Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009,326(5959):1509-1512. |
[58] | Kato-Inui T, Takahashi G, Hsu S, Miyaoka Y . Clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein 9 with improved proof- reading enhances homology-directed repair. Nucleic Acids Res, 2018,46(9):4677-4688. |
[59] | Carlson-Stevermer J, Abdeen AA, Kohlenberg L, Goedland M, Molugu K, Lou M, Saha K . Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nat Commun, 2017,8(1):1711. |
[60] | Ma M, Zhuang FF, Hu XB, Wang BL, Wen XZ, Ji JF, Xi JJ . Efficient generation of mice carrying homozygous double-floxp alleles using the Cas9-Avidin/Biotin-donor DNA system. Cell Res, 2017,27(4):578-581. |
[61] | Gu B, Posfai E, Rossant J . Efficient generation of targeted large insertions by microinjection into two-cell- stage mouse embryos. Nat Biotechnol, 2018,36(7):632-637. |
[62] | Savic N, Ringnalda FC, Lindsay H, Berk C, Bargsten K, Li YZ, Neri D, Robinson MD, Ciaudo C, Hall J, Jinek M, Schwank G . Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. eLife, 2018,7:e33761. |
[63] | Aird EJ, Lovendahl KN, St MA, Harris RS, Gordon WR . Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun Biol, 2018,1:54. |
[64] | Aceytuno RD, Piett CG, Havali-Shahriari Z, Edwards RA, Rey M, Ye RQ, Javed F, Fang SJ, Mani R, Weinfeld M, Hammel M, Tainer JA, Schriemer DC, Lees-Miller S P,Glover J. Structural and functional characterization of the PNKP-XRCC4-LigIV DNA repair complex. Nucleic Acids Res, 2017,45(10):6238-6251. |
[65] | Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kuhn R . Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol, 2015,33(5):543-548. |
[66] | Zhang JP, Li XL, Li GH, Chen WQ, Arakaki C, Botimer GD, Baylink D, Zhang L, Wen W, Fu YW, Xu J, Chun N, Yuan WP, Cheng T, Zhang XB . Efficient precise knockin with a double cut HDR donor after CRISPR/ Cas9-mediated double-stranded DNA cleavage. Genome Biol, 2017,18(1):35. |
[67] | Shao SM, Ren CH, Liu ZT, Bai YC, Chen ZL, Wei ZH, Wang X, Zhang ZY, Xu K . Enhancing CRISPR/Cas9- mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52. Int J Biochem Cell Biol, 2017,92:43-52. |
[68] | Charpentier M, Khedher A, Menoret S, Brion A, Lamribet K, Dardillac E, Boix C, Perrouault L, Tesson L, Geny S, De Cian A, Itier JM, Anegon I, Lopez B, Giovannangeli C, Concordet JP . CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nat Commun, 2018,9(1):1133. |
[69] | Jayavaradhan R, Pillis DM, Goodman M, Zhang F, Zhang Y, Andreassen PR, Malik P . CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Nat Commun, 2019,10(1):2866. |
[70] | Tran NT, Bashir S, Li X, Rossius J, Chu VT, Rajewsky K, Kühn R . Enhancement of precise gene editing by the association of Cas9 with homologous recombination factors. Front Genet, 2019,10:365. |
[71] | Gutschner T, Haemmerle M, Genovese G, Draetta GF, Chin L . Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Rep, 2016,14(6):1555-1566. |
[72] | Howden SE, Mccoll B, Glaser A, Vadolas J, Petrou S, Little MH, Elefanty AG, Stanley EG . A Cas9 variant for efficient generation of indel-free knockin or gene- corrected human pluripotent stem cells. Stem Cell Reports, 2016,7(3):508-517. |
[73] | Bollag RJ, Waldman AS, Liskay RM . Homologous recombination in mammalian cells. Annu Rev Genet, 1989,23:199-225. |
[74] | Shin J, Chen J, Solnica-Krezel L . Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development, 2014,141(19):3807-3818. |
[75] | Auer TO, Duroure K, De Cian A, Concordet JP, Del BF . Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res, 2014,24(1):142-153. |
[76] | Yao X, Wang X, Liu JL, Hu XD, Shi LY, Shen XW, Ying WQ, Sun XY, Wang X, Huang PY, Yang H . CRISPR/Cas9 - mediated precise targeted integration in vivo using a double cut donor with short homology arms. EBioMedicine, 2017,20:19-26. |
[77] | Cristea S, Freyvert Y, Santiago Y, Holmes MC, Urnov FD, Gregory PD, Cost GJ . In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration. Biotechnol Bioeng, 2013,110(3):871-880. |
[78] | Fujitani Y, Yamamoto K, Kobayashi I . Dependence of frequency of homologous recombination on the homology length. Genetics, 1995,140(2):797-809. |
[79] | Orlando SJ, Santiago Y, Dekelver RC, Freyvert Y, Boydston EA, Moehle EA, Choi VM, Gopalan SM, Lou JF, Li J, Miller JC, Holmes MC, Gregory PD, Urnov FD, Cost GJ . Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res, 2010,38(15):e152. |
[80] | Byrne SM, Ortiz L, Mali P, Aach J, Church GM . Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res, 2015,43(3):e21. |
[81] | Shy BR, Macdougall MS, Clarke R, Merrill BJ . Co-incident insertion enables high efficiency genome engineering in mouse embryonic stem cells. Nucleic Acids Res, 2016,44(16):7997-8010. |
[82] | Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, Daimon T, Sezutsu H, Yamamoto T, Sakuma T, Suzuki KT . Microhomology-mediated end-joining- dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun, 2014,5:5560. |
[83] | Aida T, Nakade S, Sakuma T, Izu Y, Oishi A, Mochida K, Ishikubo H, Usami T, Aizawa H, Yamamoto T, Tanaka K . Gene cassette knock-in in mammalian cells and zygotes by enhanced MME[J]. BMC Genomics, 2016,17(1):979. |
[84] | Sakuma T, Nakade S, Sakane Y, Suzuki KT, Yamamoto T . MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc, 2016,11(1):118-133. |
[85] | Paix A, Folkmann A, Goldman DH, Kulaga H, Grzelak MJ, Rasoloson D, Paidemarry S, Green R, Reed RR, Seydoux G . Precision genome editing using synthesis- dependent repair of Cas9-induced DNA breaks. Proc Natl Acad Sci USA, 2017,114(50):E10745-E10754. |
[86] | Liang XQ, Potter J, Kumar S, Ravinder N, Chesnut JD . Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. J Biotechnol, 2017,241:136-146. |
[87] | Rivera-Torres N, Strouse B, Bialk P, Niamat RA, Kmiec EB . The position of DNA cleavage by TALENs and cell synchronization influences the frequency of gene editing directed by single-stranded oligonucleotides. PLoS One, 2014,9(5):e96483. |
[88] | Richardson CD, Ray GJ, Dewitt MA, Curie GL, Corn JE . Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol, 2016,34(3):339-344. |
[89] | Yumlu S, Stumm J, Bashir S, Dreyer AK, Lisowski P, Danner E, Kühn R. Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/ Cas9. Methods, 2017, 121-122:29-44. |
[90] | Yang LH, Guell M, Byrne S, Yang JL, De Los AA, Mali P, Aach J, Kim-Kiselak C, Briggs AW, Rios X, Huang PY, Daley G, Church G . Optimization of scarless human stem cell genome editing. Nucleic Acids Res, 2013,41(19):9049-9061. |
[91] | Moreno-Mateos MA, Fernandez JP, Rouet R, Vejnar CE, Lane MA, Mis E, Khokha MK, Doudna JA, Giraldez AJ . CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nat Commun, 2017,8(1):2024. |
[92] | Prykhozhij SV, Fuller C, Steele SL, Veinotte CJ, Razaghi B, Robitaille JM, Mcmaster CR, Shlien A, Malkin D, Berman JN . Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9. Nucleic Acids Res, 2018,46(17):e102. |
[93] | Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB, Bacchetta R, Tsalenko A, Dellinger D, Bruhn L, Porteus MH . Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol, 2015,33(9):985-989. |
[94] | Gutierrez-Triana JA, Tavhelidse T, Thumberger T, Thomas I, Wittbrodt B, Kellner T, Anlas K, Tsingos E, Wittbrodt J . Efficient single-copy HDR by 5' modified long dsDNA donors. eLife, 2018,7:e39468. |
[95] | Miura H, Quadros RM, Gurumurthy CB, Ohtsuka M . Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat Protoc, 2018,13(1):195-215. |
[96] | Quadros RM, Miura H, Harms DW, Akatsuka H, Sato T, Aida T, Redder R, Richardson GP, Inagaki Y, Sakai D, Buckley SM, Seshacharyulu P, Batra SK, Behlke MA, Zeiner SA, Jacobi AM, Izu Y, Thoreson WB, Urness LD, Mansour SL, Ohtsuka M, Gurumurthy CB . Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol, 2017,18(1):92. |
[97] | Yoshimi K, Kunihiro Y, Kaneko T, Nagahora H, Voigt B, Mashimo T. ssODN-mediated knock-in with CRISPR- Cas for large genomic regions in zygotes. Nat Commun, 2016,7:10431. |
[98] | Li GL, Zhang XW, Zhong CL, Mo JX, Quan R, Yang J, Liu DW, Li ZC, Yang HQ, Wu ZF . Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells. Sci Rep, 2017,7(1):8943. |
[99] | Lin S, Staahl BT, Alla RK, Doudna JA . Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife, 2014,3:e04766. |
[100] | Ma XJ, Chen X, Jin Y, Ge WY, Wang WY, Kong LH, Ji JF, Guo X, Huang J, Feng XH, Fu JF, Zhu SY . Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells. Nat Commun, 2018,9(1):1303. |
[101] | Yu C, Liu YX, Ma TH, Liu K, Xu SH, Zhang Y, Liu HL, La Russa M, Xie M, Ding S, Qi LS . Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell, 2015,16(2):142-147. |
[102] | Pinder J, Salsman J, Dellaire G . Nuclear domain 'knock-in' screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucleic Acids Res, 2015,43(19):9379-9392. |
[103] | Lin ZY, Zhang YL, Gao TY, Wang LD, Zhang Q, Zhou J, Zhao J . Homologous recombination efficiency enhanced by inhibition of MEK and GSK3β. Genesis, 2014,52(11):889-896. |
[104] | Robert F, Barbeau M, Éthier S, Dostie J, Pelletier J . Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Med, 2015,7:93. |
[105] | Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC . Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature, 2005,435(7042):646-651. |
[106] | Rahman SH, Bobis-Wozowicz S, Chatterjee D, Gellhaus K, Pars K, Heilbronn R, Jacobs R, Cathomen T . The nontoxic cell cycle modulator indirubin augments transduction of adeno-associated viral vectors and zinc- finger nuclease-mediated gene targeting. Hum Gene Ther, 2013,24(1):67-77. |
[107] | Yang D, Scavuzzo MA, Chmielowiec J, Sharp R, Bajic A, Borowiak M . Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci Rep, 2016,6(1):21264. |
[108] | Lee JS, Grav LM, Pedersen LE, Lee GM, Kildegaard HF . Accelerated homology-directed targeted integration of transgenes in Chinese hamster ovary cells via CRISPR/ Cas9 and fluorescent enrichment. Biotechnol Bioeng, 2016,113(11):2518-2523. |
[109] | Tsakraklides V, Brevnova E, Stephanopoulos G, Shaw AJ . Improved gene targeting through cell cycle synchronization. PLoS One, 2015,10(7):e133434. |
[110] | Borel F, Lacroix FB, Margolis RL . Prolonged arrest of mammalian cells at the G1/S boundary results in permanent S phase stasis. J Cell Sci, 2002,115(Pt 14):2829-2838. |
[111] | Miyaoka Y, Berman JR, Cooper SB, Mayerl SJ, Chan AH, Zhang B, Karlin-Neumann GA, Conklin BR . Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome- editing. Sci Rep, 2016,6:23549. |
[112] | Kouranova E, Forbes K, Zhao GJ, Warren J, Bartels A, Wu YM, Cui XX . CRISPRs for optimal targeting: delivery of CRISPR components as DNA, RNA, and protein into cultured cells and single-cell embryos. Hum Gene Ther, 2016,27(6):464-475. |
[113] | Yan NN, Sun YS, Fang YY, Deng JR, Mu L, Xu K, Mymryk JS, Zhang ZY . A universal surrogate reporter for efficient enrichment of CRISPR/Cas9-mediated homology-directed repair in mammalian cells. Mol Ther Nucleic Acids, 2019,19:775-789. |
[114] | Richardson CD, Kazane KR, Feng SJ, Zelin E, Bray NL, Schafer AJ, Floor SN, Corn JE . CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat Genet, 2018,50(8):1132-1139. |
[115] | Xie ZC, Pang DX, Wang KK, Li MJ, Guo NN, Yuan HM, Li JN, Zou XD, Jiao HP, Ouyang HS, Li ZJ, Tang XC . Optimization of a CRISPR/Cas9-mediated knock-in strategy at the porcine Rosa26 locus in porcine foetal fibroblasts. Sci Rep, 2017,7(1):3036. |
[116] | Li GL, Zhong CL, Mo JX, Quan R, Wu ZF, Li ZC, Yang HQ, Zhang XW . Advances in site-specific integration of transgene in animal genome. Hereditas(Beijing), 2017,39(2):98-109. |
李国玲, 钟翠丽, 莫健新, 全绒, 吴珍芳, 李紫聪, 杨化强, 张献伟 . 动物基因组定点整合转基因技术研究进展. 遗传, 2017,39(2):98-109. | |
[117] | Wang NZ, Liu JR, Wang C, Bai LY, Jiang XF . Asymmetric total syntheses of (-)-jerantinines A, C, and E, (-)-16-methoxytabersonine, (-)-vindoline, and (+)- vinblastine. Org Lett, 2018,20(1):292-295. |
[118] | Chiu WH, Luo SJ, Chen CL, Cheng JH, Hsieh CY, Wang CY, Huang WC, Su WC, Lin CF . Vinca alkaloids cause aberrant ROS-mediated JNK activation, Mcl-1 downregulation, DNA damage, mitochondrial dysfunction, and apoptosis in lung adenocarcinoma cells. Biochem Pharmacol, 2012,83(9):1159-1171. |
[119] | Wei RJ, Wu WR, Pan CT, Yu CY, Li CF, Chen LR, Liang SS, Shiue YL . Inhibition of the formation of autophagosome but not autolysosome augments ABT-751-induced apoptosis in TP53-deficient Hep-3B cells. J Cell Physiol, 2019,234(6):9551-9563. |
[120] | Singh P, Schimenti JC, Bolcun-Filas E . A mouse geneticist's practical guide to CRISPR applications. Genetics, 2015,199(1):1-15. |
[121] | Zhang YB, Zhang ZW, Ge W . An efficient platform for generating somatic point mutations with germline transmission in the zebrafish by CRISPR/Cas9-mediated gene editing. J Biol Chem, 2018,293(17):6611-6622. |
[122] | Gerlach M, Kraft T, Brenner B, Petersen B, Niemann H, Montag J . Efficient knock-in of a point mutation in porcine fibroblasts using the CRISPR/Cas9-GMNN fusion gene. Genes (Basel), 2018,9(6):296. |
[123] | Riesenberg S, Maricic T . Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells. Nat Commun, 2018,9(1):2164. |
[124] | Liu YL, Yang Y, Kang XJ, Lin B, Yu Q, Song B, Gao G, Chen YY, Sun XF, Li XP, Bu L, Fan Y . One-step biallelic and scarless correction of a β-thalassemia mutation in patient-specific iPSCs without drug selection. Mol Ther Nucleic Acids, 2017,6:57-67. |
[125] | Steyer B, Bu Q, Cory E, Jiang K, Duong S, Sinha D, Steltzer S, Gamm D, Chang Q, Saha K . Scarless genome editing of human pluripotent stem cells via transient puromycin selection. Stem Cell Reports, 2018,10(2):642-654. |
[126] | Boel A, De Saffel H, Steyaert W, Callewaert B, De Paepe A, Coucke PJ, Willaert A. CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments. Dis Model Mech, 2018, 11(10): dmm035352. |
[127] | He XJ, Tan CL, Wang F, Wang YF, Zhou R, Cui DX, You WX, Zhao H, Ren JW, Feng B . Knock-in of large reporter genes in human cells via CRISPR/Cas9- induced homology-dependent and independent DNA repair. Nucleic Acids Res, 2016,44(9):e85. |
[128] | Auer TO, Del BF . Homology-independent integration of plasmid DNA into the zebrafish genome. Methods Mol Biol, 2016,1451:31-51. |
[129] | Lackner DH, Carre A, Guzzardo PM, Banning C, Mangena R, Henley T, Oberndorfer S, Gapp BV, Nijman S, Brummelkamp TR, Bürckstümmer T . A generic strategy for CRISPR-Cas9-mediated gene tagging. Nat Commun, 2015,6:10237. |
[130] | Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z, Kurita M, Hishida T, Li M, Aizawa E, Guo SC, Chen S, Goebl A, Soligalla RD, Qu J, Jiang TS, Fu X, Jafari M, Esteban CR, Berggren WT, Lajara J, Nunez- Delicado E, Guillen P, Campistol JM, Matsuzaki F, Liu GH, Magistretti P, Zhang K, Callaway EM, Zhang K, Belmonte JC . In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature, 2016,540(7631):144-149. |
[131] | Suzuki K, Yamamoto M, Hernandez-Benitez R, Li Z, Wei C, Soligalla RD, Aizawa E, Hatanaka F, Kurita M, Reddy P, Ocampo A, Hishida T, Sakurai M, Nemeth AN, Nunez DE, Campistol JM, Magistretti P, Guillen P, Rodriguez EC, Gong JH, Yuan YL, Gu Y, Liu GH, Lopez-Otin C, Wu J, Zhang K, Izpisua BJ . Precise in vivo genome editing via single homology arm donor mediated intron-targeting gene integration for genetic disease correction. Cell Res, 2019,29(10):804-819. |
[132] | Maresca M, Lin VG, Guo N, Yang Y . Obligate ligation-gated recombination (ObLiGaRe): custom- designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res, 2013,23(3):539-546. |
[133] | Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK . Dimeric CRISPR RNA-guided Fok I nucleases for highly specific genome editing. Nat Biotechnol, 2014,32(6):569-576. |
[134] | Guilinger JP, Thompson DB, Liu DR . Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol, 2014,32(6):577-582. |
[135] | Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR . Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019,576(7785):149. |
[1] | 卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
[2] | 王秉政, 张超, 张佳丽, 孙锦. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45(7): 593-601. |
[3] | 吴仲胜, 高誉, 杜勇涛, 党颂, 何康敏. CRISPR-Cas9基因编辑技术对细胞内源蛋白进行荧光标记的实验操作[J]. 遗传, 2023, 45(2): 165-175. |
[4] | 刘梅珍, 王立人, 李咏梅, 马雪云, 韩红辉, 李大力. 利用CRISPR/Cas9技术构建基因编辑大鼠模型[J]. 遗传, 2023, 45(1): 78-87. |
[5] | 张潇筠, 徐坤, 沈俊岑, 穆璐, 钱泓润, 崔婕妤, 马宝霞, 陈知龙, 张智英, 魏泽辉. 一种新型提高HDR效率的CRISPR/Cas9-Gal4BD供体适配基因编辑系统[J]. 遗传, 2022, 44(8): 708-719. |
[6] | 张充, 魏子璇, 王敏, 陈瑶生, 何祖勇. 利用CRISPR/Cas9在人类黑色素瘤细胞中编辑MC1R与功能分析[J]. 遗传, 2022, 44(7): 581-590. |
[7] | 刘尧, 周先辉, 黄舒泓, 王小龙. 引导编辑:突破碱基编辑类型的新技术[J]. 遗传, 2022, 44(11): 993-1008. |
[8] | 韩玉婷, 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-14. |
[9] | 王海涛, 李亭亭, 黄勋, 马润林, 刘秋月. 遗传修饰技术在绵羊分子设计育种中的应用[J]. 遗传, 2021, 43(6): 580-600. |
[10] | 杨光武, 田嫄. 果蝇F-box基因Ppa促进脂肪储存[J]. 遗传, 2021, 43(6): 615-622. |
[11] | 彭定威, 李瑞强, 曾武, 王敏, 石翾, 曾检华, 刘小红, 陈瑶生, 何祖勇. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. |
[12] | 王娜, 甲芝莲, 吴强. RFX5调控原钙粘蛋白α基因簇的表达[J]. 遗传, 2020, 42(8): 760-774. |
[13] | 陈赢男, 陆静. CRISPR/Cas9系统在林木基因编辑中的应用[J]. 遗传, 2020, 42(7): 657-668. |
[14] | 李霞, 施皖, 耿立召, 许建平. CRISPR/Cas核糖核蛋白介导的植物基因组编辑[J]. 遗传, 2020, 42(6): 556-564. |
[15] | 秦瑞英, 魏鹏程. Prime editing引导植物基因组精确编辑新局面[J]. 遗传, 2020, 42(6): 519-523. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: