[1] |
Nicolas G, Pottier C, Charbonnier C, Guyant-Marechal L, Le Ber I, Pariente J, Labauge P, Ayrignac X, Defebvre L, Maltete D, Martinaud O, Lefaucheur R, Guillin O, Wallon D, Chaumette B, Rondepierre P, Derache N, Fromager G, Schaeffer S, Krystkowiak P, Verny C, Jurici S, Sauvee M, Verin M, Lebouvier T, Rouaud O, Thauvin-Robinet C, Rousseau S, Rovelet-Lecrux A, Frebourg T, Campion D, Hannequin D . Phenotypic spectrum of probable and genetically-confirmed idiopathic basal ganglia calcification. Brain, 2013,1369(11):3395-3407.
|
[2] |
Oliveira JRM, Spiteri E, Sobrido MJ, Hopfer S, Klepper J, Voit T, Gilbert J, Wszolek ZK, Calne DB, Stoessl AJ, Hutton M, Manyam BV, Boller F, Baquero M, Geschwind DH . Genetic heterogeneity in familial idiopathic basal ganglia calcification (Fahr disease). Neurology, 2004,63(11):2165-2167.
doi: 10.1212/01.wnl.0000145601.88274.88
pmid: 15596772
|
[3] |
Wang C, Li YL, Shi L, Ren J, Patti M, Wang T, de Oliveira JRm, Sobrido MJ, Quintáns B, Baquero M, Cui XN, Zhang XY, Wang LQ, Xu HB, Wang JH, Yao J, Dai XH, Liu J, Zhang L, Ma HY, Gao Y, Ma XX, Feng SL, Liu MG, Wang QK, Forster IC, Zhang X, Liu JY. Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat Genet, 2012,44(3):254-256.
pmid: 22327515
|
[4] |
Nicolas G, Pottier C, Maltete D, Coutant S, Rovelet- Lecrux A, Legallic S, Rousseau S, Vaschalde Y, Guyant- Marechal L, Augustin J, Martinaud O, Defebvre L, Krystkowiak P, Pariente J, Clanet M, Labauge P, Ayrignac X, Lefaucheur R, Le Ber I, Frébourg T, Hannequin D, Campion D . Mutation of the PDGFRB gene as a cause of idiopathic basal ganglia calcification. Neurology, 2013,80(2):181-187.
doi: 10.1212/WNL.0b013e31827ccf34
|
[5] |
Keller A, Westenberger A, Sobrido MJ, Garcia-Murias M, Domingo A, Sears RL, Lemos RR, Ordoñez-Ugalde A, Nicolas G, da Cunha JE, Rushing EJ, Hugelshofer M, Wurnig MC, Kaech A, Reimann R, Lohmann K, Dobričić V, Carracedo A, Petrović I, Miyasaki JM, Abakumova I, Mäe MA, Raschperger E, Zatz M, Zschiedrich K, Klepper J, Spiteri E, Prieto JM, Navas I, Preuss M, Dering C, Janković M, Paucar M, Svenningsson P, Saliminejad K, Khorshid HR, Novaković I, Aguzzi A, Boss A, Le Ber I, Defer G, Hannequin D, Kostić VS, Campion D, Geschwind DH, Coppola G, Betsholtz C, Klein C, Oliveira JR. Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice. Nat Genet, 2013,45(9):1077-1082.
doi: 10.1038/ng.2723
pmid: 23913003
|
[6] |
Legati A, Giovannini D, Nicolas G, López-Sánchez U, Quintáns B, Oliveira JR, Sears RL, Ramos EM, Spiteri E, Sobrido MJ, Carracedo A, Castro-Fernández C, Cubizolle S, Fogel BL, Goizet C, Jen JC, Kirdlarp S, Lang AE, Miedzybrodzka Z, Mitarnun W, Paucar M, Paulson H, Pariente J, Richard AC, Salins NS, Simpson SA, Striano P, Svenningsson P, Tison F, Unni VK, Vanakker O, Wessels MW, Wetchaphanphesat S, Yang M, Boller F, Campion D, Hannequin D, Sitbon M, Geschwind DH, Battini JL, Coppola G . Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export. Nat Genet, 2015,47(6):579-581.
doi: 10.1038/ng.3289
pmid: 25938945
|
[7] |
Yao XP, Cheng XW, Wang C, Zhao M, Guo XX, Su HZ, Lai LL, Zou XH, Chen XJ, Zhao YY, Dong EL, Lu YQ, Wu S, Li XJ, Fan GF, Yu HJ, Xu JF, Wang N, Xiong ZQ, Chen WJ. Biallelic mutations in MYORG cause autosomal recessive primary familial brain calcification. Neuron, 2018, 98(6): 1116-1123.e5.
doi: 10.1016/j.neuron.2018.05.037
pmid: 29910000
|
[8] |
Cen ZD, Chen Y, Chen S, Wang H, Yang DH, Zhang HM, Wu HW, Wang LB, Tang SY, Ye J, Shen J, Wang HT, Fu F, Chen XH, Xie F, Liu P, Xu X, Cao JZ, Cai P, Pan QQ, Li JY, Yang W, Shan PF, Li YZ, Liu JY, Zhang BR, Luo W . Biallelic loss-of-function mutations in JAM2 cause primary familial brain calcification. Brain, 2020,143(2):491-502.
doi: 10.1093/brain/awz392
pmid: 31851307
|
[9] |
Lemos RR, Ramos EM, Legati A, Nicolas G, Jenkinson EM, Livingston JH, Crow YJ, Campion D, Coppola G, Oliveira JRM . Update and mutational analysis of SLC20A2: a major cause of primary familial brain calcification. Hum Mutat, 2015,36(5):489-495.
doi: 10.1002/humu.22778
pmid: 25726928
|
[10] |
Yamada M, Tanaka M, Takagi M, Kobayashi S, Taguchi Y, Takashima S, Tanaka K, Touge T, Hatsuta H, Murayama S, Hayashi Y, Kaneko M, Ishiura H, Mitsui J, Atsuta N, Sobue G, Shimozawa N, Inuzuka T, Tsuji S, Hozumi I . Evaluation of SLC20A2 mutations that cause idiopathic basal ganglia calcification in Japan. Neurology, 2014,82(8):705-712.
doi: 10.1212/WNL.0000000000000143
|
[11] |
Jensen N, Schrøder HD, Hejbøl EK, Füchtbauer EM, de Oliveira JR, Pedersen L. Loss of function of Slc20a2 associated with familial idiopathic basal ganglia calcification in humans causes brain calcifications in mice. J Mol Neurosci, 2013,51(3):994-999.
doi: 10.1007/s12031-013-0085-6
|
[12] |
Wallingford MC, Gammill HS, Giachelli CM . Slc20a2 deficiency results in fetal growth restriction and placental calcification associated with thickened basement membranes and novel CD13 and lamininα1 expressing cells. Reprod Biol, 2016,16(1):13-26.
doi: 10.1016/j.repbio.2015.12.004
pmid: 26952749
|
[13] |
Platt RJ, Chen SD, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng GP, Sharp PA, Zhang F . CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell, 2014,159(2):440-455.
doi: 10.1016/j.cell.2014.09.014
|
[14] |
Wallingford MC, Chia JJ, Leaf EM, Borgeia S, Chavkin NW, Sawangmake C, Marro K, Cox TC, Speer MY, Giachelli CM . SLC20A2 deficiency in mice leads to elevated phosphate levels in cerbrospinal fluid and glymphatic pathway-associated arteriolar calcification, and recapitulates human idiopathic basal ganglia calcification. Brain Pathol, 2017,27(1):64-76.
doi: 10.1111/bpa.12362
pmid: 26822507
|
[15] |
Bezerra DP, Oliveira JRM . New studies on knockout mouse for the SLC20A2 gene show much more than brain calcifications. J Mol Neurosci, 2016,59(4):565-566.
doi: 10.1007/s12031-016-0778-8
pmid: 27380911
|
[16] |
Forster I, Hernando N, Sorribas V, Werner A . Phosphate transporters in renal, gastrointestinal, and other tissues. Adv Chronic Kidney Dis, 2011,18(2):63-76.
doi: 10.1053/j.ackd.2011.01.006
pmid: 21406290
|
[17] |
Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC . The Na+-Pi cotransporter PiT-2 ( SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am J Physiol Renal Physiol, 2009,296(4):F691-699.
doi: 10.1152/ajprenal.90623.2008
pmid: 19073637
|
[18] |
Villa-Bellosta R, Sorribas V . Compensatory regulation of the sodium/phosphate cotransporters NaPi-IIc ( SCL34A3) and Pit-2(SLC20A2) during Pi deprivation and acidosis. Pflugers Arch, 2010,459(3):499-508.
doi: 10.1007/s00424-009-0746-z
pmid: 19841935
|
[19] |
Wang JP, Zhang YM . The application of Red/ET recombination to high efficient gene-targeting vector construction. Hereditas (Beijing), 2005,27(6):953-958.
|
|
王军平, 张友明 . Red/ET重组在基因打靶载体快速构建中的应用. 遗传, 2005,27(6):953-958.
|
[20] |
He XB, Gu F . Genome-editing: focus on the off-target effects. Chin J Biotechnol, 2017,33(10):1757-1775.
|
|
何秀斌, 谷峰 . 基因组编辑脱靶研究进展. 生物工程学报, 2017,33(10):1757-1775.
|
[21] |
Jensen N, Schrøder HD, Hejbøl EK, Thomsen JS, Brüel A, Larsen FT, Vinding MC, Orlowski D, Füchtbauer EM, Oliveira JRM, Pedersen L . Mice knocked out for the primary brain calcification-associated gene Slc20a2 show unimpaired prenatal survival but retarded growth and nodules in the brain that grow and calcify over time. Am J Pathol, 2018,188(8):1865-1881.
doi: 10.1016/j.ajpath.2018.04.010
pmid: 29803831
|