遗传 ›› 2021, Vol. 43 ›› Issue (4): 350-361.doi: 10.16288/j.yczz.21-061
郑宏源1, 闫琳2, 杨超1,3, 武雅蓉1, 秦婧靓1, 郝彤宇1, 杨大进2, 郭云昌2, 裴晓燕2, 赵彤言1, 崔玉军1()
收稿日期:
2021-02-09
修回日期:
2021-03-16
出版日期:
2021-04-20
发布日期:
2021-04-20
通讯作者:
崔玉军
E-mail:cuiyujun.new@gmail.com
作者简介:
郑宏源,在读硕士研究生,专业方向:细菌基因组流行病学。E-mail: 基金资助:
Hongyuan Zheng1, Lin Yan2, Chao Yang1,3, Yarong Wu1, Jingliang Qin1, Tongyu Hao1, Dajin Yang2, Yunchang Guo2, Xiaoyan Pei2, Tongyan Zhao1, Yujun Cui1()
Received:
2021-02-09
Revised:
2021-03-16
Online:
2021-04-20
Published:
2021-04-20
Contact:
Cui Yujun
E-mail:cuiyujun.new@gmail.com
Supported by:
摘要:
溶藻弧菌(Vibrio alginolyticus)是一种能够对人类以及鱼、虾、贝类等水产品致病的弧菌,给人类健康带来威胁,也给水产养殖业造成巨大的经济损失。目前该物种基于全基因组的遗传多样性和重要遗传元件研究报道较少。本研究对采集自全国4个省份的68株溶藻弧菌进行高通量测序,获得全基因组序列,并结合113株公开发表的全球序列数据,利用fineSTRUCTURE软件、VFDB毒力因子库和CARD、ResFinder耐药数据库,对溶藻弧菌的种群结构和毒力、耐药因子分别进行解析。结果表明:溶藻弧菌可分为谱系1和谱系2。两个谱系在美洲和亚洲均有分布,但欧洲仅分离到谱系1菌株;共鉴定发现12个克隆群,其中一个克隆群内菌株存在跨洋传播现象。该物种携带tlh、OmpU、IlpA等多种不同功能的毒力因子;毒力因子在两个谱系间的分布无特异性,但存在地域间差异:其中欧洲菌株携带VP1611、vcrD、vopD和fleR/flrC的比率低于其他地区,而基因IlpA的携带率则明显高于其他地区,我国广西菌株中fleR/flrC基因携带率低于其他省份,且不携带IlpA。多个基因组携带blaCARB-42、tet(34)、tet(35)、parE、CRP、rsmA、TxR和fos等与多种抗生素耐受相关的基因,其中TxR和fos基因在谱系2中的出现频率远高于谱系1;此外,TxR基因在亚洲菌株中的携带率高于美洲和欧洲地区,而在我国四川菌株中的携带率则低于其他省份。在5个基因组中(VA24、VA28、2014V-1011、ZJ-T和Vb1833)观察到质粒或ICE等携带多种耐药基因的大片段。本研究通过群体基因组学的研究方法,揭示了溶藻弧菌的种群结构组成和毒力、耐药相关元件的分布,为进一步了解溶藻弧菌的遗传特征和致病机制提供必要基础,为该病原的监测、预防和控制工作提供科学支撑。
郑宏源, 闫琳, 杨超, 武雅蓉, 秦婧靓, 郝彤宇, 杨大进, 郭云昌, 裴晓燕, 赵彤言, 崔玉军. 溶藻弧菌群体基因组学研究[J]. 遗传, 2021, 43(4): 350-361.
Hongyuan Zheng, Lin Yan, Chao Yang, Yarong Wu, Jingliang Qin, Tongyu Hao, Dajin Yang, Yunchang Guo, Xiaoyan Pei, Tongyan Zhao, Yujun Cui. Population genomics study of Vibrio alginolyticus[J]. Hereditas(Beijing), 2021, 43(4): 350-361.
表2
溶藻弧菌毒力因子及相关功能"
相关毒力基因 | 毒力因子编号 | 毒力因子名称 | 毒力因子功能 |
---|---|---|---|
flgD(100%) flgC(100%) flgB(100%) fliM(100%) fliG(100%) cheR(99%) cheW(99%) cheY(99%) flgF(99%) cheV(94%) flgE(84%) flgG(49%) fleR/flrC(45%) flhA(1%) | VF0519 | Flagella | Adhesin factor |
vcrH(100%) vopB(99%) vscI(99%) exsD(99%) exsA(99%) vopQ(99%) vxsC(98%) vscD(98%) tyeA(97%) vscO(97%) vscU(90%) vcrD(86%) vscQ(82%) vopD(76%) vscN(2%) vscC(1%) | VF0408 | T3SS1 | Rapid apoptosis, Cell rounding, Osmotic lysis |
tlh(100%) | TX170 | Thermolabile_hemolysin | Apoptosis, Membrane vesiculation, Necrosis |
OmpU(98%) | VF0514 | OmpU | Porin, Iron balance, Vaccine candidate |
VP1611(87%) | VF0512 | MAM7 | Multivalent adhesion molecule MAM7 |
IlpA(26%) | VF0513 | IlpA | Immunogenic lipoprotein A |
htpB(9%) | VF0159 | Hsp60 | Heat shock protein HtpB |
ugd(1%) | VF0560 | Capsule | UDP-glucose 6-dehydrogenase |
hcp-2(1%) | SS181 | VAS | T6SS substrate Hcp-2 |
表3
部分毒力因子在不同谱系、不同国家和地区以及中国不同地点的分布统计"
VP1611 (%) | vcrD (%) | flgE (%) | vscQ (%) | vopD (%) | flgG (%) | fleR/flrC (%) | IlpA (%) | |
---|---|---|---|---|---|---|---|---|
谱系1 | 85 | 82 | 89 | 77 | 77 | 45 | 45 | 29 |
谱系2 | 93 | 95 | 68 | 98 | 73 | 61 | 43 | 16 |
中国 | 92 | 89 | 87 | 89 | 78 | 53 | 53 | 20 |
美洲 | 93 | 91 | 88 | 79 | 81 | 47 | 44 | 29 |
亚洲其他国家 | 89 | 89 | 56 | 78 | 89 | 44 | 44 | 0 |
欧洲 | 47 | 41 | 88 | 88 | 35 | 65 | 18 | 65 |
山东 | 90 | 90 | 77 | 95 | 74 | 56 | 62 | 21 |
湖北 | 100 | 100 | 94 | 76 | 82 | 47 | 41 | 24 |
四川 | 71 | 86 | 100 | 86 | 100 | 43 | 86 | 14 |
广西 | 100 | 80 | 100 | 100 | 60 | 40 | 20 | 0 |
表4
溶藻弧菌耐药基因与相关抗生素和耐药机制"
耐药基因 | 耐受抗生素 | 耐药机制 |
---|---|---|
blaCARB-42(99%) blaVEB-1(1%) | Beta-lactam resistance | Antibiotic inactivation |
E.coli_parE(100%) QnrVC1(6%) QnrA1(1%) QnrS5(1%) QnrVC5(1%) | Quinolone resistance | Antibiotic target alteration (parE) Antibiotic target protection (qnr) |
tet(35)(100%) tet(34)(98%) TxR(34%) tet(59)(1%) | Tetracycline resistance | Antibiotic efflux |
ANT(2'')-Ia(2%) APH(3'')-Ib(2%) APH(6)-Id(2%) ANT(3'')-IIa(1%) APH(3')-Ia(1%) | Aminoglycoside antibiotic | Antibiotic inactivation |
fos(5%) | Fosfomycin resistance | Antibiotic inactivation |
sul1(2%) sul2(2%) | Sulfonamide antibiotic | Antibiotic target replacement |
cmlA5(1%) floR(1%) catA3(1%) | Phenicol antibiotic | Antibiotic efflux (cmlA5, floR) Antibiotic inactivation (catA3) |
Ere(A)(1%) mph(A)(1%) | Macrolide antibiotic | Antibiotic inactivation |
arr-2(1%) | Rifamycin antibiotic | Antibiotic inactivation |
dfrA15(1%) dfrA31(1%) | Trimethoprim resistant | Antibiotic target replacement |
BRP(MBL)(1%) | Glycopeptide antibiotic | Antibiotic inactivation |
CRP(100%) rsmA(98%) | ARG_regulator | Antibiotic efflux |
qacEdelta1(2%) | Quaternary ammonium compounds | Antibiotic efflux |
[1] |
Lajnef R, Snoussi M, Romalde JL, Nozha C, Hassen A. Comparative study on the antibiotic susceptibility and plasmid profiles of Vibrio alginolyticus strains isolated from four Tunisian marine biotopes. World J Microbiol Biotechnol, 2012,28(12):3345-3363.
doi: 10.1007/s11274-012-1147-6 pmid: 22918722 |
[2] | Xie JS, Bu LF, Jin S, Wang XY, Zhao QS, Zhou SM, Xu YJ. Outbreak of vibriosis caused by Vibrio harveyi and Vibrio alginolyticus in farmed seahorse Hippocampus kuda in China. Aquaculture, 2020,523:735168. |
[3] |
Reilly GD, Reilly CA, Smith EG, Baker-Austin C. Vibrio alginolyticus-associated wound infection acquired in British waters, Guernsey, July 2011. Euro Surveill, 2011,16(42):19994.
pmid: 22027377 |
[4] | Zhou K, Sun F, Zha DJ, Liu JY, Ma YY, Hao XK, Xu XL . Biological characteristics of a Vibrio alginolyticus strain isolated from a patient with chronic otitis externa. J Pathog Biol, 2020,158(2):146-151. |
周柯, 孙菲, 查定军, 刘家云, 马越云, 郝晓柯, 徐修礼 . 慢性外耳道炎患者分离溶藻弧菌的鉴定及生物学特性分析. 中国病原生物学杂志, 2020,158(2):146-151. | |
[5] |
Gómez-León J, Villamil L, Lemos ML, Novoa B, Figueras A. Isolation of Vibrio alginolyticus and Vibrio splendidus from aquacultured carpet shell clam (Ruditapes decussatus) larvae associated with mass mortalities. Appl Environ Microbiol, 2005,71(1):98-104.
doi: 10.1128/AEM.71.1.98-104.2005 pmid: 15640176 |
[6] |
González-Escalona N, Blackstone GM, Depaola A. Characterization of a Vibrio alginolyticus strain, isolated from Alaskan oysters, carrying a hemolysin gene similar to the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus. Appl Environ Microbiol, 2006,72(12):7925-7929.
doi: 10.1128/AEM.01548-06 pmid: 17056701 |
[7] |
Newton A, Kendall M, Vugia DJ, Henao OL, Mahon BE. Increasing rates of vibriosis in the United States, 1996-2010: review of surveillance data from 2 systems. Clin Infect Dis, 2012, 54 Suppl 5(05): S391-S395.
doi: 10.1093/cid/cis243 pmid: 22572659 |
[8] |
Jacobs Slifka KM, Newton AE, Mahon BE. Vibrio alginolyticus infections in the USA, 1988-2012. Epidemiol Infect, 2017,145(7):1491-1499.
pmid: 28202099 |
[9] | Hu NX, Ma C, Li YJ . Research progress on molecular typing technology of Vibrio alginolyticus. Int J Lab Med, 2014,35(13):1753-1755. |
胡南霞, 马聪, 李艳君 . 溶藻弧菌分子分型技术的研究进展. 国际检验医学杂志, 2014,35(13):1753-1755. | |
[10] | Sudheesh PS, Jie K, Xu HS. Random amplified polymorphic DNA-PCR typing of Vibrio parahaemolyticus and V. alginolyticus isolated from cultured shrimps. Aquaculture, 2002,207(1-2):11-17. |
[11] | Ouyang JL, Zhou YC, Wu YG, Dai XL, Wang SF, Xie ZY . RAPD analysis of genetic diversity of Vibrio alginolyticus isolated from Hainan province. Marin Sci, 2011,35(7):30-36. |
欧阳吉隆, 周永灿, 吴学贵, 戴小连, 王世锋, 谢珍玉 . 海南地区溶藻弧菌遗传多样性的RAPD分析. 海洋科学, 2011,35(7):30-36. | |
[12] |
Ren CH, Hu CQ, Luo P, Chen C, Jiang X, Wang QB. Genotyping of Vibrio alginolyticus isolates from Daya Bay by infrequent-restriction-site PCR and pulsed-field gel electrophoresis. Mol Cell Probes, 2008,22(4):267-271.
pmid: 18586455 |
[13] |
Talon D, Cailleaux V, Thouverez M, Michel-Briand Y. Discriminatory power and usefulness of pulsed-field gel electrophoresis in epidemiological studies of Pseudomonas aeruginosa. J Hosp Infect, 1996,32(2):135-145.
doi: 10.1016/s0195-6701(96)90055-9 pmid: 8666764 |
[14] |
Inglis TJ, Garrow SC, Adams C, Henderson M, Mayo M, Currie BJ. Acute melioidosis outbreak in Western Australia. Epidemiol Infect, 1999,123(3):437-443.
doi: 10.1017/s0950268899002964 pmid: 10694154 |
[15] |
Xie ZY, Hu CQ, Chen C, Zhang LP, Ren CH. Investigation of seven Vibrio virulence genes among Vibrio alginolyticus and Vibrio parahaemolyticus strains from the coastal mariculture systems in Guangdong, China. Lett Appl Microbiol, 2005,41(2):202-207.
pmid: 16033522 |
[16] |
Hernández-Robles MF, Álvarez-Contreras AK, Juárez- García P, Natividad-Bonifacio I, Curiel-Quesada E, Vázquez-Salinas C, Quiñones-Ramírez EI. Virulence factors and antimicrobial resistance in environmental strains of Vibrio alginolyticus. Int Microbiol, 2016,19(4):191-198.
doi: 10.2436/20.1501.01.277 pmid: 28504816 |
[17] |
Mechri B, Medhioub A, Medhioub MN, Aouni M. Genotypic diversity, antimicrobial resistance and screening of Vibrio cholerae molecular virulence markers in Vibrio alginolyticus strains recovered from a Tunisian Ruditapes decussatus hatchery. Pol J Microbiol, 2013,62(3):263-272.
pmid: 24459831 |
[18] | Wei S . Detection of Vibrio alginolyticus and its virulence- related genes[Dissertation]. Jinan University, 2013. |
魏霜 . 溶藻弧菌及其毒力相关基因的检测[学位论文]. 暨南大学, 2013. | |
[19] | Xian YY . Analysis of the distribution of virulence-related genes and antibiotic resistance of Vibrio parahaemolyticus and Vibrio alginolyticus[Dissertation]. Jinan University, 2015. |
冼钰茵 . 副溶血弧菌与溶藻弧菌毒力基因分布与抗生素耐药性分析[学位论文]. 暨南大学, 2015. | |
[20] |
Mechri B, Monastiri A, Medhioub A, Medhioub MN, Aouni M. Molecular characterization and phylogenetic analysis of highly pathogenic Vibrio alginolyticus strains isolated during mortality outbreaks in cultured Ruditapes decussatus juvenile. Microb Pathog, 2017,111:487-496.
pmid: 28923608 |
[21] | Chen HQ . Analysis of drug resistance and drug resistance genes of a pathogenic Vibrio alginolyticus from large yellow croaker. Fish Info & Strateg, 2020,35(1):63-67. |
陈洪清 . 一株大黄鱼致病性溶藻弧菌的耐药性及耐药基因分析. 渔业信息与战略, 2020,35(1):63-67. | |
[22] |
Limmathurotsakul D, Golding N, Dance DAB, Messina JP, Pigott DM, Moyes CL, Rolim DB, Bertherat E, Day NPJ, Peacock SJ, Hay SI. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol, 2016,1:15008.
doi: 10.1038/nmicrobiol.2015.8 pmid: 26877885 |
[23] |
Chewapreecha C, Holden MTG, Vehkala M, Välimäki N, Yang ZR, Harris SR, Mather AE, Tuanyok A, De Smet B, Le Hello S, Bizet C, Mayo M, Wuthiekanun V, Limmathurotsakul D, Phetsouvanh R, Spratt BG, Corander J, Keim P, Dougan G, Dance DAB, Currie BJ, Parkhill J, Peacock SJ. Global and regional dissemination and evolution of Burkholderia pseudomallei. Nat Microbiol, 2017,2:16263.
doi: 10.1038/nmicrobiol.2016.263 pmid: 28112723 |
[24] |
Yang C, Pei XY, Wu YR, Yan L, Yan YF, Song YQ, Coyle NM, Martinez-Urtaza J, Quince C, Hu QH, Jiang M, Feil E, Yang DJ, Song YJ, Zhou DS, Yang RF, Falush D, Cui YJ. Recent mixing of Vibrio parahaemolyticus populations. Isme J, 2019,13(10):2578-2588.
pmid: 31235840 |
[25] |
Yang C, Zhang XL, Fan H, Li YH, Hu QH, Yang RF, Cui YJ. Genetic diversity, virulence factors and farm-to-table spread pattern of Vibrio parahaemolyticus food-associated isolates. Food Microbiol, 2019,84:103270.
doi: 10.1016/j.fm.2019.103270 pmid: 31421783 |
[26] |
Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype data. PLoS Genet, 2012,8(1):e1002453.
pmid: 22291602 |
[27] |
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014,30(15):2114-2120.
doi: 10.1093/bioinformatics/btu170 pmid: 24695404 |
[28] |
Cui YJ, Yu C, Yan YF, Li DF, Li YJ, Jombart T, Weinert LA, Wang ZY, Guo ZB, Xu LZ, Zhang YJ, Zheng HC, Qin N, Xiao X, Wu MS, Wang XY, Zhou DS, Qi ZZ, Du ZM, Wu HL, Yang XW, Cao HZ, Wang H, Wang J, Yao SS, Rakin A, Li YR, Falush D, Balloux F, Achtman M, Song YJ, Wang J, Yang RF. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc Natl Acad Sci USA, 2013,110(2):577-582.
pmid: 23271803 |
[29] |
Delcher AL, Salzberg SL, Phillippy AM. Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinformatics, 2003,0(1): 10.3.1-10.3.18.
doi: 10.1002/cpbi.86 pmid: 31756036 |
[30] |
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 2014,30(14):2068-2069.
doi: 10.1093/bioinformatics/btu153 pmid: 24642063 |
[31] |
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, 2015,31(22):3691-3693.
doi: 10.1093/bioinformatics/btv421 pmid: 26198102 |
[32] |
Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res, 2016,44(W1):W242-W245.
doi: 10.1093/nar/gkw290 pmid: 27095192 |
[33] |
Liu B, Zheng DD, Jin Q, Chen LH, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res, 2019,47(D1):D687-D692.
doi: 10.1093/nar/gky1080 pmid: 30395255 |
[34] |
Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen ALV, Cheng AA, Liu SH, Min SY, Miroshnichenko A, Tran HK, Werfalli RE, Nasir JA, Oloni M, Speicher DJ, Florescu A, Singh B, Faltyn M, Hernandez-Koutoucheva A, Sharma AN, Bordeleau E, Pawlowski AC, Zubyk HL, Dooley D, Griffiths E, Maguire F, Winsor GL, Beiko RG, Brinkman FSL, Hsiao WWL, Domselaar GV, Mcarthur AG. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res, 2020,48(D1):D517-D525.
doi: 10.1093/nar/gkz935 pmid: 31665441 |
[35] |
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, Fagelhauer L, Chakraborty T, Neumann B, Werner G, Bender JK, Stingl K, Nguyen M, Coppens J, Xavier BB, Malhotra-Kumar S, Westh H, Pinholt M, Anjum MF, Duggett NA, Kempf I, Nykäsenoja S, Olkkola S, Wieczorek K, Amaro A, Clemente L, Mossong J, Losch S, Ragimbeau C, Lund O, Aarestrup FM. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother, 2020,75(12):3491-3500.
doi: 10.1093/jac/dkaa345 pmid: 32780112 |
[36] |
Wang HQ, Yang C, Sun Z, Zheng W, Zhang W, Yu H, Wu YR, Didelot X, Yang RF, Pan JC, Cui YJ. Genomic epidemiology of Vibrio cholerae reveals the regional and global spread of two epidemic non-toxigenic lineages. PLoS Negl Trop Dis, 2020,14(2):e0008046.
doi: 10.1371/journal.pntd.0008046 pmid: 32069325 |
[37] |
Cui YJ, Yang C, Qiu HL, Wang H, Yang RF, Falush D. The landscape of coadaptation in Vibrio parahaemolyticus. eLife, 2020,9:e54136.
doi: 10.7554/eLife.54136 pmid: 32195663 |
[38] |
Zhao Z, Liu JX, Deng YQ, Huang W, Ren CH, Call DR, Hu CQ. The Vibrio alginolyticus T3SS effectors, Val1686 and Val1680, induce cell rounding, apoptosis and lysis of fish epithelial cells. Virulence, 2018,9(1):318-330.
doi: 10.1080/21505594.2017.1414134 pmid: 29252102 |
[39] |
Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Najima M, Nakano M, Yamashita A, Kubota Y, Kimura S, Yasunaga T, Honda T, Shinagawa H, Hattori M, Iida T. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. Lancet, 2003,361(9359):743-749.
doi: 10.1016/S0140-6736(03)12659-1 pmid: 12620739 |
[40] | Zhou XH, Konkel ME, Call DR. Type III secretion system 1 of Vibrio parahaemolyticus induces oncosis in both epithelial and monocytic cell lines. Microbiology (Reading), 2009,155(Pt 3):837-851. |
[41] | Burdette DL, Seemann J, Orth K. Vibrio VopQ induces PI3-kinase-independent autophagy and antagonizes phagocytosis. Mol Microbiol, 2009,73(4):639-649. |
[42] |
Jia AR, Woo NYS, Zhang XH. Expression, purification, and characterization of thermolabile hemolysin (TLH) from Vibrio alginolyticus. Dis Aquat Organ, 2010,90(2):121-127.
doi: 10.3354/dao02225 pmid: 20662368 |
[43] | Wong SK, Zhang XH, Woo NYS. Vibrio alginolyticus thermolabile hemolysin(TLH)induces apoptosis, membrane vesiculation and necrosis in sea bream erythrocytes. Aquaculture, 2012,330-333:29-36. |
[44] |
Cai SH, Yaol SY, Lu YS, Wu ZH, Jian JC, Wang B. Immune response in Lutjanus erythropterus induced by the major outer membrane protein (OmpU) of Vibrio alginolyticus. Dis Aquat Organ, 2010,90(1):63-68.
doi: 10.3354/dao02206 pmid: 20597431 |
[45] |
Lv TT, Dai F, Zhuang QT, Zhao XL, Shao YN, Guo M, Lv ZM, Li CH, Zhang WW. Outer membrane protein OmpU is related to iron balance in Vibrio alginolyticus. Microbiol Res, 2020,230:126350.
doi: 10.1016/j.micres.2019.126350 pmid: 31629270 |
[46] |
Cambray G, Guerout AM, Mazel D. Integrons. Annu Rev Genet, 2010,44:141-166.
doi: 10.1146/annurev-genet-102209-163504 pmid: 20707672 |
[47] |
Rajpara N, Nair M, Bhardwaj AK. A highly promiscuous integron, plasmids, extended spectrum beta lactamases and efflux pumps as factors governing multidrug resistance in a highly drug resistant Vibrio fluvialis isolate BD146 from Kolkata, India. Indian J Microbiol, 2018,58(1):60-67.
pmid: 29434398 |
[1] | 邓雯文, 李才武, 赵思越, 李仁贵, 何永果, 吴代福, 杨盛智, 黄炎, 张和民, 邹立扣. 大熊猫源致病大肠杆菌CCHTP全基因组测序及耐药和毒力基因分析[J]. 遗传, 2019, 41(12): 1138-1147. |
[2] | 邓雯文,龙梅,杨盛智,邹立扣. β-内酰胺酶耐药基因blaOKP进化及其侧翼序列特征研究[J]. 遗传, 2018, 40(7): 585-592. |
[3] | 杨超, 杨瑞馥, 崔玉军. 细菌全基因组关联研究的方法与应用[J]. 遗传, 2018, 40(1): 57-65. |
[4] | 杨献伟,杨瑞馥,崔玉军. 细菌基因组同源重组:量化与鉴定[J]. 遗传, 2016, 38(2): 137-143. |
[5] | 张刚, 冯婕. 细菌固有耐药的研究进展[J]. 遗传, 2016, 38(10): 872-880. |
[6] | 邵谦之, 姜毅, 吴金雨. 全基因组测序及其在遗传性疾病研究及诊断中的应用[J]. 遗传, 2014, 36(11): 1087-1098. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: