[1] Didelot X, Maiden MCJ. Impact of recombination on bacterial evolution. Trends Microbiol , 2010, 18(7): 315-322.
[2] Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol , 2005, 3(9): 711-721.
[3] Feavers IM, Heath AB, Bygraves JA, Maiden MCJ. Role of horizontal genetic exchange in the antigenic variation of the class 1 outer membrane protein of Neisseria meningitidis . Mol Microbiol , 1992, 6(4): 489-495.
[4] Spratt BG, Bowler LD, Zhang QY, Zhou J, Smith JM. Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J Mol Evol , 1992, 34(2): 115-125.
[5] Vos M. Why do bacteria engage in homologous recombination? Trends Microbiol , 2009, 17(6): 226-232.
[6] Hacker J, Carniel E. Ecological fitness, genomic islands and bacterial pathogenicity: a darwinian view of the evolution of microbes. EMBO Rep , 2001, 2(5): 376-381.
[7] Arnold ML, Sapir Y, Martin NH. Genetic exchange and the origin of adaptations: prokaryotes to primates. Philos Trans R Soc Lond B Biol Sci , 2008, 363(1505): 2813-2820.
[8] Achtman M. Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol , 2008, 62: 53-70.
[9] Cui YJ, Yu C, Yan YF, Li DF, Li YJ, Jombart T, Weinert LA, Wang ZY, Guo ZB, Xu LZ, Zhang YJ, Zheng HC, Qin N, Xiao X, Wu MS, Wang XY, Zhou DS, Qi ZZ, Du ZM, Wu HL, Yang XW, Cao HZ, Wang H, Wang J, Yao SS, Rakin A, Li YR, Falush D, Balloux F, Achtman M, Song YJ, Wang J, Yang RF. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis . Proc Natl Acad Sci USA , 2013, 110(2): 577-582.
[10] Zhou ZM, McCann A, Weill FX, Blin C, Nair S, Wain J, Dougan G, Achtman M. Transient Darwinian selection in Salmonella enterica serovar Paratyphi A during 450 years of global spread of enteric fever. Proc Natl Acad Sci USA , 2014, 111(33): 12199-12204.
[11] Cui YJ, Yang XW, Didelot X, Guo CY, Li DF, Yan YF, Zhang YQ, Yuan YT, Yang HM, Wang J, Wang J, Song YJ, Zhou DS, Falush D, Yang RF. Epidemic clones, oceanic gene pools, and Eco-LD in the free living marine pathogen Vibrio parahaemolyticus . Mol Biol Evol , 2015, 32(6): 1396-1410.
[12] Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol , 2006, 23(2): 254-267.
[13] Bandelt H-J, Dress AWM. A canonical decomposition theory for metrics on a finite set. Adv Math , 1992, 92(1): 47-105.
[14] Bryant D, Moulton V. Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol , 2004, 21(2): 255-265.
[15] Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ, Angiuoli SV, Oggioni M, Dunning Hotopp JC, Hu FZ, Riley DR, Covacci A, Mitchell TJ, Bentley SD, Kilian M, Ehrlich GD, Rappuoli R, Moxon ER, Masignani V. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol , 2010, 11(10): R107.
[16] Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics , 2005, 21(2): 263-265.
[17] McVean G, Auton A. LDhat 2.1: a package for the population genetic analysis of recombination. Department of Statistics, Oxford, OX1 3TG, UK , 2007.
[18] Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics , 2003, 19(18): 2496-2497.
[19] Hudson RR. Two-locus sampling distributions and their application. Genetics , 2001, 159(4): 1805-1817.
[20] McVean G, Awadalla P, Fearnhead P. A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics , 2002, 160(3): 1231-1241.
[21] Jolley KA, Wilson DJ, Kriz P, McVean G, Maiden MC. The influence of mutation, recombination, population history, and selection on patterns of genetic diversity in Neisseria meningitidis. Mol Biol Evol , 2005, 22(3): 562-569.
[22] Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, Calteau A, Chiapello H, Clermont O, Cruveiller S, Danchin A, Diard M, Dossat C, El Karoui M, Frapy E, Garry L, Ghigo JM, Gilles AM, Johnson J, le Bouguénec C, Lescat M, Mangenot S, Martinez-Jéhanne V, Matic I, Nassif X, Oztas S, Petit MA, Pichon C, Rouy Z, Ruf CS, Schneider D, Tourret J, Vacherie B, Vallenet D, Médigue C, Rocha EPC, Denamur E. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet , 2009, 5(1): e1000344.
[23] Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics , 1989, 123(3): 585-595.
[24] Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics , 1993, 133(3): 693-709.
[25] Guttman DS, Dykhuizen DE. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science , 1994, 266(5189): 1380-1383.
[26] Didelot X, Falush D. Inference of bacterial microevolution using multilocus sequence data. Genetics , 2007, 175(3): 1251-1266.
[27] Vos M, Didelot X. A comparison of homologous recombination rates in bacteria and archaea. ISME J , 2009, 3(2): 199-208.
[28] Bruen TC, Philippe H, Bryant D. A simple and robust statistical test for detecting the presence of recombination. Genetics , 2006, 172(4): 2665-2681.
[29] Minin VN, Dorman KS, Fang F, Suchard MA. Dual multiple change-point model leads to more accurate recombination detection. Bioinformatics , 2005, 21(13): 3034-3042.
[30] Martin D, Rybicki E. RDP: detection of recombination amongst aligned sequences. Bioinformatics , 2000, 16(6): 562-563.
[31] Martin DP, Williamson C, Posada D. RDP2: recombination detection and analysis from sequence alignments. Bioinformatics , 2005, 21(2): 260-262.
[32] Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P. RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics , 2010, 26(19): 2462-2463.
[33] Smith JM. Analyzing the mosaic structure of genes. J Mol Evol , 1992, 34(2): 126-129.
[34] Jakobsen IB, Easteal S. A program for calculating and displaying compatibility matrices as an aid in determining reticulate evolution in molecular sequences. Comput Appl Biosci , 1996, 12(4): 291-295.
[35] Drouin G, Prat F, Ell M, Clarke GD. Detecting and characterizing gene conversions between multigene family members. Mol Biol Evol , 1999, 16(10): 1369-1390.
[36] Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, McGee L, von Gottberg A, Song JH, Ko KS, Pichon B, Baker S, Parry CM, Lambertsen LM, Shahinas D, Pillai DR, Mitchell TJ, Dougan G, Tomasz A, Klugman KP, Parkhill J, Hanage WP, Bentley SD. Rapid pneumococcal evolution in response to clinical interventions. Science , 2011, 331(6016): 430-434.
[37] Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, Parkhill J, Harris SR. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res , 2015, 43(3): e15.
[38] Guo CY, Yang XW, Wu YR, Yang HY, Han YP, Yang RF, Hu LP, Cui YJ, Zhou DS. MLST-based inference of genetic diversity and population structure of clinical Klebsiella pneumoniae , China. Sci Rep , 2015, 5: 7612.
[39] Didelot X, Bowden R, Street T, Golubchik T, Spencer C, McVean G, Sangal V, Anjum MF, Achtman M, Falush D, Donnelly P. Recombination and population structure in Salmonella enterica . PLoS Genet , 2011, 7(7): e1002191.
[40] Park L. Linkage disequilibrium decay and past population history in the human genome. PLoS One , 2012, 7(10): e46603.
[41] Posada D, Crandall KA. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci USA , 2001, 98(24): 13757-13762.
[42] Chan CX, Beiko RG, Ragan MA. Detecting recombination in evolving nucleotide sequences. BMC Bioinformatics , 2006, 7: 412. |