遗传 ›› 2023, Vol. 45 ›› Issue (1): 52-66.doi: 10.16288/j.yczz.22-293
张瑾1,2(), 刘开会2, 张颖2, 郝金萍2, 张广峰2, 徐小玉2, 畅晶晶2, 刘兴朋3, 杨雪莹2(), 叶健1,2()
收稿日期:
2022-10-31
修回日期:
2022-11-29
出版日期:
2023-01-20
发布日期:
2022-12-09
通讯作者:
杨雪莹,叶健
E-mail:zhangjin1101@126.com;yxystyhhp@163.com;yejian77@126.com
作者简介:
张瑾,在读博士研究生,副高级警务技术任职资格,研究方向:法医物证学。E-mail: 基金资助:
Jin Zhang1,2(), Kaihui Liu2, Ying Zhang2, Jinping Hao2, Guangfeng Zhang2, Xiaoyu Xu2, Jingjing Chang2, Xingpeng Liu3, Xueying Yang2(), Jian Ye1,2()
Received:
2022-10-31
Revised:
2022-11-29
Online:
2023-01-20
Published:
2022-12-09
Contact:
Yang Xueying,Ye Jian
E-mail:zhangjin1101@126.com;yxystyhhp@163.com;yejian77@126.com
Supported by:
摘要:
案件现场生物物证信息深度挖掘与刻画,可以为案件侦查、涉案人员查找提供丰富可靠线索,是当前法医DNA检验的有效补充,也是国内外法庭科学的研究热点之一。本研究以血液样本为研究对象,证实了0~168天内离体血液样本转录组变化的时间相关性,并建立随机森林模型实现不同离体时间血液样本分类。同时,进一步证实相同离体时间段内,不同吸烟习惯和不同性别供体来源的血液样本转录本具有显著差异,HLA-DRB1、HLA-DQB1和HLA-DQA2可以作为供体吸烟习惯判别标志,Y染色体非重组区(non-recombining Y, NRY)的转录本RPS4Y1和EIF1AY可以作为供体性别特征判别标志。本研究为法庭科学领域建立基于转录组分析的血液样本遗留时间和供体特征刻画方法提供了理论基础和实验依据。
张瑾, 刘开会, 张颖, 郝金萍, 张广峰, 徐小玉, 畅晶晶, 刘兴朋, 杨雪莹, 叶健. 转录组分析在血液样本时间和供体特征刻画中的应用研究[J]. 遗传, 2023, 45(1): 52-66.
Jin Zhang, Kaihui Liu, Ying Zhang, Jinping Hao, Guangfeng Zhang, Xiaoyu Xu, Jingjing Chang, Xingpeng Liu, Xueying Yang, Jian Ye. Application of transcriptome in time analysis and donor characterization in blood samples[J]. Hereditas(Beijing), 2023, 45(1): 52-66.
表1
实验样本分组"
物证特征 | 分组 | 样本数量 | 离体时间D (天) | 取样时间点 |
---|---|---|---|---|
吸烟 | 吸烟组(smoker) | 56 | 0≤D≤168 | D0、D0.5、D1、D2、D4、D7、D14、D21、D28、D56、D84、D112、D140、D168 |
对照组(control) | 70 | 0≤D≤168 | D0、D0.5、D1、D2、D4、D7、D14、D21、D28、D56、D84、D112、D140、D168 | |
性别 | 男性组(male) | 140 | 0≤D≤168 | D0、D0.5、D1、D2、D4、D7、D14、D21、D28、D56、D84、D112、D140、D168 |
女性组(female) | 138 | 0≤D≤168 | D0、D0.5、D1、D2、D4、D7、D14、D21、D28、D56、D84、D112、D140、D168 | |
离体时间 | D0~2组 | 80 | 0≤D≤2 | D0、D0.5、D1、D2 |
D4~14组 | 58 | 2<D≤14 | D4、D7、D14 | |
D21~56组 | 60 | 14<D≤56 | D21、D28、D56 | |
D84~168组 | 80 | 56<D≤168 | D84、D112、D140、D168 |
表2
测序质量与数据"
分组 | Raw reads (Mean ± SD) | Clean reads (Mean ± SD) | 错误率 (%) (Mean ± SD) | Q20 (%) (Mean ± SD) | Q30 (%) (Mean ± SD) | GC含量 (%) (Mean ± SD) |
---|---|---|---|---|---|---|
吸烟组 (n = 56) | 57928613.071±11306086.212 | 56796377.250±11069341.242 | 0.022 ± 0.004 | 98.226 ± 0.254 | 94.867 ± 0.574 | 56.115 ± 1.985 |
对照组 (n = 70) | 59559976.829±12657910.627 | 58188050.543±12252512.979 | 0.021 ± 0.003 | 98.272 ± 0.229 | 94.965 ± 0.508 | 57.314 ± 2.118 |
男性组 (n = 140) | 58822285.871±12184267.688 | 57535769.014±11852506.630 | 0.021 ± 0.003 | 98.258 ± 0.239 | 94.933 ± 0.534 | 56.736 ± 2.117 |
女性组 (n = 138) | 56861638.043±13407561.979 | 55739764.043±13003300.979 | 0.022 ± 0.004 | 98.168 ± 0.272 | 94.716 ± 0.581 | 55.667 ± 2.543 |
D0~2组 (n = 80) | 69324109.250±9861979.513 | 67804445.700±9697013.881 | 0.021 ± 0.003 | 98.220 ± 0.190 | 94.877 ± 0.437 | 53.855 ± 1.214 |
D4~14组 (n = 58) | 64783625.207±10637521.112 | 63346337.621±10173427.925 | 0.022 ± 0.004 | 98.204 ± 0.291 | 94.837 ± 0.672 | 56.134 ± 1.580 |
D21~56组 (n = 60) | 50664396.800±7061084.292 | 49725835.000±6685845.152 | 0.021 ± 0.002 | 98.321 ± 0.193 | 95.032 ± 0.447 | 59.043 ± 1.099 |
D84~168组 (n = 80) | 46734790.775±5268303.017 | 45813772.025±5235594.729 | 0.023 ± 0.005 | 98.132 ± 0.307 | 94.610 ± 0.612 | 56.480 ± 2.041 |
图1
主成分分析中的血液样本分布 A:不同离体时间(0~2天、4~14天、21~56天和84~168天)血液样本分布;B:0~168天时间段吸烟组(smoker)及对照组(control)血液样本分布;C:0~168天时间段男性组(male)及女性组(female)血液样本分布;D:0~2天时间段吸烟组(smoker)及对照组(control)血液样本分布;E:4~14天时间段吸烟组(smoker)及对照组(control)血液样本分布;F:21~56天时间段吸烟组(smoker)及对照组(control)血液样本分布;G:84~168天时间段吸烟组(smoker)及对照组(control)血液样本分布;H:0~2天时间段男性组(male)及女性组(female)血液样本分布;I:4~14天时间段男性组(male)及女性组(female)血液样本分布;J:21~56天时间段男性组(male)及女性组(female)血液样本分布;K:84~168天时间段男性组(male)及女性组(female)血液样本分布。坐标轴分别表示第一、第二、第三主成分,百分比则表示该主成分对样品差异的贡献值;图中的每个点表示一个样品,同一个组的样品使用同一种颜色表示。"
表3
吸烟特征相关差异转录本"
上调转录本 | 下调转录本 | ||||
---|---|---|---|---|---|
序号 | 基因 ID | 基因名称 | 序号 | 基因 ID | 基因名称 |
1 | ENSG00000196126 | HLA-DRB1 | 1 | ENSG00000237541 | HLA-DQA2 |
2 | ENSG00000019169 | MARCO | 2 | ENSG00000276345 | AC004556.1 |
3 | ENSG00000196735 | HLA-DQA1 | 3 | ENSG00000284690 | CD300H |
4 | ENSG00000103355 | PRSS33 | 4 | ENSG00000060709 | RIMBP2 |
5 | ENSG00000105205 | CLC | 5 | ENSG00000174171 | - |
6 | ENSG00000276085 | CCL3L1 | 6 | ENSG00000229391 | - |
7 | ENSG00000214026 | MRPL23 | 7 | ENSG00000211821 | TRDV2 |
8 | ENSG00000179344 | HLA-DQB1 | 8 | ENSG00000204345 | CD300LD |
9 | ENSG00000189068 | VSTM1 | 9 | ENSG00000211638 | IGLV8-61 |
10 | ENSG00000105366 | SIGLEC8 | 10 | ENSG00000022556 | NLRP2 |
11 | ENSG00000172322 | CLEC12A | 11 | ENSG00000211666 | IGLV2-14 |
12 | ENSG00000205927 | OLIG2 | |||
13 | ENSG00000277632 | CCL3 | |||
14 | ENSG00000092067 | CEBPE |
表5
随机森林模型11个重要特征转录本"
序号 | 基因 ID | 基因名称 | MDA |
---|---|---|---|
1 | ENSG00000078747 | ITCH | 2.1454 |
2 | ENSG00000128585 | MKLN1 | 2.1290 |
3 | ENSG00000215421 | ZNF407 | 2.1264 |
4 | ENSG00000126945 | HNRNPH2 | 2.0812 |
5 | ENSG00000143751 | SDE2 | 2.0780 |
6 | ENSG00000127954 | STEAP4 | 2.0617 |
7 | ENSG00000113580 | NR3C1 | 1.9407 |
8 | ENSG00000112096 | SOD2 | 1.9382 |
9 | ENSG00000198105 | ZNF248 | 1.9331 |
10 | ENSG00000125304 | TM9SF2 | 1.9190 |
11 | ENSG00000103994 | ZNF106 | 1.9133 |
表6
特征判别标志及判别阈值"
性别特征刻画 | 吸烟特征刻画 | ||||
---|---|---|---|---|---|
判别标志 | 男性 | 女性 | 判别标志 | 吸烟 | 不吸烟 |
RPS4Y1 | FPKM≥1 | FPKM<1 | HLA-DRB1/ACTB | RER HLA-DRB1/ACTB≥0.04099 | RER HLA-DRB1/ACTB≤0.02322 |
EIF1AY | FPKM≥1 | FPKM<1 | HLA-DRB1/GAPDH | RER HLA-DRB1/GAPDH≥0.67420 | RER HLA-DRB1/GAPDH≤0.3564 |
HLA-DQB1/ACTB | RER HLA-DQB1/ACTB≥0.00651 | RER HLA-DQB1/ACTB≤0.00269 | |||
HLA-DQA2/ACTB | RER HLA-DQA2/ACTB≤0.00026 | RER HLA-DQA2/ACTB≥0.00193 | |||
HLA-DQA2/GAPDH | RER HLA-DQA2/GAPDH≤0.00397 | RER HLA-DQA2/GAPDH≥0.02989 |
表7
样本离体时间和供体特征分析交叉验证结果"
时间信息/供体特征 | 判别标志 | 交叉验证组别 | 随机抽取样本数 | 样本判断正确率 | 平均正确率 |
---|---|---|---|---|---|
离体时间 | - | D0~2 | 26 | 92.31% | 91.03% |
D4~14 | 14 | 85.71% | |||
D21~56 | 13 | 76.92% | |||
D84~168 | 25 | 100% | |||
吸烟习惯 | HLA-DRB1/ACTB | 1 | 13 | 92.31% | 76.92% |
2 | 13 | 76.92% | |||
3 | 13 | 46.15% | |||
4 | 13 | 84.62% | |||
5 | 13 | 84.62% | |||
HLA-DRB1/GAPDH | 1 | 13 | 69.23% | 73.85% | |
2 | 13 | 76.92% | |||
3 | 13 | 53.85% | |||
4 | 13 | 84.62% | |||
5 | 13 | 84.62% | |||
HLA-DQB1/ACTB | 1 | 13 | 92.31% | 72.31% | |
2 | 13 | 61.54% | |||
3 | 13 | 61.54% | |||
4 | 13 | 76.92% | |||
5 | 13 | 69.23% | |||
HLA-DQA2/ACTB | 1 | 13 | 69.23% | 55.39% | |
2 | 13 | 53.85% | |||
3 | 13 | 46.15% | |||
4 | 13 | 53.85% | |||
5 | 13 | 53.85% | |||
HLA-DQA2/GAPDH | 1 | 13 | 69.23% | 58.46% | |
2 | 13 | 61.54% | |||
3 | 13 | 46.15% | |||
4 | 13 | 69.23% | |||
5 | 13 | 46.15% | |||
性别 | RPS4Y1 | 1 | 28 | 100% | 100% |
2 | 28 | 100% | |||
3 | 28 | 100% | |||
4 | 28 | 100% | |||
5 | 28 | 100% | |||
EIF1AY | 1 | 28 | 100% | 100% | |
2 | 28 | 100% | |||
3 | 28 | 100% | |||
4 | 28 | 100% | |||
5 | 28 | 100% |
[1] | 侯一平.法医物证学: 第4版. 北京: 人民卫生出版社, 2016, 1-5. |
[2] | 布尔特尔, 侯一平译. 法医DNA分型专论: 方法学(第3版). 科学出版社, 2013, 83-90. |
[3] | Li M, Li Y, Yang YF, Yan YW, Liu F, Li CX, Zeng FM, Zhao WT. Human facial shape related SNP analysis in Han Chinese populations. Hereditas(Beijing), 2020, 42(7): 680-690. |
刘明, 李祎, 杨亚芳, 晏于文, 刘凡, 李彩霞, 曾发明, 赵雯婷. 中国汉族人群脸部特征相关SNP位点研究. 遗传, 2020, 42(7): 680-690. | |
[4] | Zhang T, Yang RQ. Review of the application of spectral imaging and mass spectrometry imaging infingerprint analysis. Forensic Pract, 2015, (1): 71-75. |
张婷, 杨瑞琴. 指印中化学物质光谱质谱成像分析技术研究进展. 中国司法鉴定, 2015, (1): 71-75. | |
[5] | Mei HC, Zhu J, Quan YK, Wang GQ. Inferring the donor’s living spatial-temporal information by stable isotope analysis of the biological evidence. Forensic Sci Technol, 2016, 41(2): 87-92. |
梅宏成, 朱军, 权养科, 王桂强. 稳定同位素检验推断生物物证供体的生活时空信息. 刑事技术, 2016, 41(2): 87-92. | |
[6] | Zhang J, Gao S, Chang JJ, Zhang Y, Yang XY, Liu KH. Advances in the research of predicting the time since deposition of evidentiary stains. Chin J Forensic Med, 2018, 33(1): 39-42. |
张瑾, 高珊, 畅晶晶, 张颖, 杨雪莹, 刘开会. 现场生物斑迹遗留时间推断研究进展. 中国法医学杂志, 2018, 33(1): 39-42. | |
[7] | Rajamannar K. Determination of the age of bloodstains using immunoelectrophoresis. J Forensic Sci, 1977, 22(1): 159-164. |
[8] | Li B, Beveridge P, O'Hare WT, Islam M. The estimation of the age of a blood stain using reflectance spectroscopy with a microspectrophotometer, spectral pre-processing and linear discriminant analysis. Forensic Sci Int, 2011, 212(1-3): 198-204. |
[9] | Bremmer RH, Nadort A, van Leeuwen TG, Aalders MCG. Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy. Forensic Sci Int, 2011, 206(1-3): 166-171. |
[10] | Hanson EK, Ballantyne J. A blue spectral shift of the hemoglobin soret band correlates with the age (time since deposition) of dried bloodstains. PLoS One, 2010, 5(9): e12830. |
[11] | Gao QY, Gao SM. Authentication of age of blooding using UV visible reflection spectrum. Spectrosc Spectral Anal, 2015, 35(8): 2221-2224. |
高茜钰, 高士明. 利用紫外可见反射光谱鉴定血迹陈旧度. 光谱学与光谱分析, 2015, 35(8): 2221-2224. | |
[12] | Edelman G, van Leeuwen TG, Aalders MCG. Hyperspectral imaging for the age estimation of blood stains at the crime scene. Forensic Sci Int, 2012, 223(1-3): 72-77. |
[13] | Edelman G, Manti V, van Ruth SM, van Leeuwen T, Aalders M. Identification and age estimation of blood stains on colored backgrounds by near infrared spectroscopy. Forensic Sci Int, 2012, 220(1-3): 239-244. |
[14] | Doty KC, McLaughlin G, Lednev IK. A Raman “spectroscopic clock” for bloodstain age determination: the first week after deposition. Anal Bioanal Chem, 2016, 408(15): 3993-4001. |
[15] | Thanakiatkrai P, Yaodam A, Kitpipit T. Age estimation of bloodstains using smartphones and digital image analysis. Forensic Sci Int, 2013, 233(1-3): 288-297. |
[16] | Alshehhi S, McCallum NA, Haddrill PR. Quantification of RNA degradation of blood-specific markers to indicate the age of bloodstains. Forensic Sci Int Genet Suppl Ser, 2017, 6: e453-e455. |
[17] | Anderson S, Howard B, Hobbs GR, Bishop CP. A method for determining the age of a bloodstain. Forensic Sci Int, 2005, 148(1): 37-45. |
[18] | Bauer M, Polzin S, Patzelt D. Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains? Forensic Sci Int, 2003, 138(1-3): 94-103. |
[19] | Anderson SE, Hobbs GR, Bishop CP. Multivariate analysis for estimating the age of a bloodstain. J Forensic Sci, 2011, 56(1): 186-193. |
[20] | Mohammed AT, Khalil SR, Ali HA, Awad A. Validation of mRNA and microRNA profiling as tools in qPCR for estimation of the age of bloodstains. Life Sci J, 2018, 15(6): 1-7. |
[21] | Glynn CL. Potential applications of microRNA profiling to forensic investigations. RNA, 2020, 26(1): 1-9. |
[22] | Hampson C, Louhelainen J, McColl S. An RNA expression method for aging forensic hair samples. J Forensic Sci, 2011, 56(2): 359-365. |
[23] | Alshehhi S, Haddrill PR. Estimating time since deposition using quantification of RNA degradation in body fluid specific markers. Forensic Sci Int, 2019, 298: 58-63. |
[24] | Fu J, Allen RW. A method to estimate the age of bloodstains using quantitative PCR. Forensic Sci Int Genet, 2019, 39: 103-108. |
[25] | Wang Y.Measurement of DNA degradation kinetics in serum, urine and saliva based on automatic STR analysis system [Dissertation]. Dalian Medical University, 2014. |
王瑶.基于STR自动检测系统对DNA在血清、尿液和唾液中降解动力学的测定[学位论文]. 大连医科大学, 2014. | |
[26] | Johnson LA, Ferris JAJ. Analysis of postmortem DNA degradation by single-cell gel electrophoresis. Forensic Sci Int, 2002, 126(1): 43-47. |
[27] | Cossette ML, Stotesbury T, Shafer ABA. Quantifying visible absorbance changes and DNA degradation in aging bloodstains under extreme temperatures. Forensic Sci Int, 2021, 318: 110627. |
[28] | Díez López C, Kayser M, Vidaki A. Estimating the time since deposition of saliva stains with a targeted bacterial DNA approach: a proof-of-principle study. Front Microbiol, 2021, 12: 647933. |
[29] | Weinbrecht KD, Fu J, Payton ME, Allen RW. Time- dependent loss of mRNA transcripts from forensic stains. Res Rep Forensic Med Sci, 2017, 7: 1-12. |
[30] | Ramaprasad A, Subudhi AK, Culleton R, Pain A. A fast and cost-effective microsampling protocol incorporating reduced animal usage for time-series transcriptomics in rodent malaria parasites. Malar J, 2019, 18(1): 26. |
[31] | Jang JS, Berg B, Holicky E, Eckloff B, Mutawe M, Carrasquillo MM, Ertekin-Taner N, Cuninngham JM. Comparative evaluation for the globin gene depletion methods for mRNA sequencing using the whole blood- derived total RNAs. BMC Genomics, 2020, 21(1): 890. |
[32] | Lopez JP, Diallo A, Cruceanu C, Fiori LM, Laboissiere S, Guillet I, Fontaine J, Ragoussis J, Benes V, Turecki G, Ernst C. Biomarker discovery: quantification of microRNAs and other small non-coding RNAs using next generation sequencing. BMC Med Genomics, 2015, 8: 35. |
[33] | Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015, 12(4): 357-360. |
[34] | Raplee ID, Evsikov AV, de Evsikova CM. Aligning the aligners: comparison of RNA sequencing data alignment and gene expression quantification tools for clinical breast cancer research. J Pers Med, 2019, 9(2): 18. |
[35] | Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics, 2015, 31(2): 166-169. |
[36] | Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010, 28(5): 511-515. |
[37] | Tiedt S, Prestel M, Malik R, Schieferdecker N, Duering M, Kautzky V, Stoycheva I, Böck J, Northoff BH, Klein M, Dorn F, Krohn K, Teupser D, Liesz A, Plesnila N, Holdt LM, Dichgans M. RNA-seq identifies circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as potential biomarkers for acute ischemic stroke. Circ Res, 2017, 121(8): 970-980. |
[38] | Li J, Zhao FQ, Wang YD, Chen JR, Tao J, Tian G, Wu SL, Liu WB, Cui QH, Geng B, Zhang WL, Weldon R, Auguste K, Yang L, Liu XY, Chen L, Yang XC, Zhu BL, Cai J. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome, 2017, 5(1): 14. |
[39] | Kong YQ, Liu JK, Gu JQ, Xu JY, Zheng YN, Wei YL, Wu SY. Optimization scheme of machine learning model for genetic division between northern Han, southern Han, Korean and Japanese. Hereditas(Beijing), 2022, 44(11): 1028-1043. |
孔永强, 刘金凯, 顾佳琪, 徐景怡, 郑雨诺, 魏以梁, 伍少远. 南-北方汉族人、韩国人和日本人遗传划分机器学习模型优化方案. 遗传, 2022, 44(11): 1028-1043. | |
[40] | Lin HJ.The prediction and functional analysis of IncRNA in embryonic development process [Dissertation]. Nanchang University, 2016. |
林海军.胚胎中lncRNA的预测及其在胚胎发育过程中的功能分析[学位论文]. 南昌大学, 2016. | |
[41] | Ming TY, Jiang LR, Liu J, Chang JJ, Hou YP, Zhang GF, Wang Z. Y-Chromosomal genetic markers: forensic application and prospect. Forensic Sci Technol, 2022, 47(4): 411-418. |
[42] | 明天悦, 蒋礼蓉, 刘京, 畅晶晶, 侯一平, 张广峰, 王正. Y染色体遗传标记的法医学应用及展望. 刑事技术, 2022, 47(4): 411-418. |
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486(7402): 207-214. | |
[43] | Zhao YX, Hu S, Ye J, Sun QF, Ji AQ. Researches of mRNA profiling for forensic body fluid identification. Forensic Sci Technol, 2019, 44(5): 388-394. |
赵一霞, 胡胜, 叶健, 孙启凡, 季安全. mRNA分析在体液斑迹组织来源推断中的应用研究进展. 刑事技术, 2019, 44(5): 388-394. | |
[44] | Zhang Q, Zhao HM, Li YJ, Chen J, Chang JJ, Yang RQ, Wang C. Application of non-coding RNA in body fluid stain identification. Chin J Forensic Med, 2020, 35(5): 514-517. |
张琦, 赵禾苗, 李永久, 陈静, 畅晶晶, 杨瑞琴, 王冲. 非编码RNA在体液斑迹鉴定中的应用. 中国法医学杂志, 2020, 35(5): 514-517. | |
[45] | Lehman DC. Forensic microbiology. Clin Lab Sci, 2012, 25(2): 114-119. |
[46] | García MG, Pérez-Cárceles MD, Osuna E, Legaz I. Impact of the human microbiome in forensic sciences: a systematic review. Appl Environ Microbiol, 2020, 86(22): e01451-20. |
[47] | Ventura Spagnolo E, Stassi C, Mondello C, Zerbo S, Milone L, Argo A. Forensic microbiology applications: a systematic review. Leg Med (Tokyo), 2019, 36: 73-80. |
[48] | Jia F, Sun XK, Yu SB, Yu J, Lin CM, Kan XS, ShaoW. An age estimation method based on DNA methylation detection in the field of forensic science. Chin J Forensic Med, 2021, 3(4): 373-378. |
贾菲, 孙学科, 喻少波, 于蛟, 林春美, 阚旭升, 邵武. DNA甲基化水平的法医学个体年龄推断. 中国法医学杂志, 2021, 36(4): 373-378. | |
[49] | Mameli A, Scudiero CM, Delogu G, Ghiani ME. Successful analysis of a 100 years old semen stain generating a complete DNA STR profile. J Forensic Leg Med, 2019, 61: 78-81. |
[50] | Xu TS, Li XG, Jiao DJ, Xie ZH, Dai ZM. Mechanism of 5′-to-3′ degradation of eukaryotic and prokaryotic mRNA. Hereditas(Beijing), 2015, 37(3): 250-258. |
许禔森, 李学贵, 焦德杰, 谢兆辉, 戴忠民. 真核生物和原核生物mRNA 5′至3′方向的降解机制. 遗传, 2015, 37(3): 250-258. | |
[51] | Althaf MM, El Kossi M, Jin JK, Sharma A, Halawa AM. Human leukocyte antigen typing and crossmatch: a comprehensive review. World J Transplant, 2017, 7(6): 339-348. |
[52] | Gao H, Han Y, Zhai XX, Gao FS. The research progress of antigen presentation by MHC molecules. Chin Bull Life Sci, 2017, 29(5): 450-461. |
高花, 韩勇, 翟晓鑫, 高凤山. MHC分子抗原递呈机制的研究进展. 生命科学, 2017, 29(5): 450-461. | |
[53] | Lu BH.Effects of smoking on autoantibodies and disease activity in patients with rheumatoid arthritis [Dissertation]. Hubei Minzu University, 2020. |
鲁邦华.吸烟对类风湿关节炎自身抗体及疾病活动的影响[学位论文]. 湖北民族大学, 2020. | |
[54] | Jiang WQ, Chen ZY, Zhou LL, Lian SY, Zhang XM. Investigation on disease cognition status and influencing factors of control level in patients with bronchial asthma. Prog Mod Biomed, 2022, 22(2): 342-346. |
蒋文青, 陈宗喻, 周垒垒, 练思雨, 张先明. 支气管哮喘患者疾病认知状况调查及控制水平的影响因素分析. 现代生物医学进展, 2022, 22(2): 342-346. | |
[55] | Heneghan N, Fu J, Pritchard J, Payton M, Allen RW. The effect of environmental conditions on the rate of RNA degradation in dried blood stains. Forensic Sci Int Genet, 2021, 51: 102456. |
[56] | Zhao CC, Zhao MZ, Zhu Y, Zhang L, Zheng Z, Wang Q, Li YG, Zhang P, Zhu SS, Ding SJ, Li JB. The persistence and stability of miRNA in bloodstained samples under different environmental conditions. Forensic Sci Int, 2021, 318: 110594. |
[57] | Salzmann AP, Arora N, Russo G, Kreutzer S, Snipen L, Haas C. Assessing time dependent changes in microbial composition of biological crime scene traces using microbial RNA markers. Forensic Sci Int Genet, 2021, 53: 102537. |
[1] | 王建梅, 刘贺贺, 马盛超, 席洋, 张荣萍, 徐倩, 李亮. 鸟类羽色性别二态性形成机制研究进展[J]. 遗传, 2022, 44(6): 491-500. |
[2] | 刘紫妍, 高艾. 炎性衰老在血液系统疾病中的研究进展[J]. 遗传, 2021, 43(12): 1132-1141. |
[3] | 郭佳妮, 刘帆, 王璐. 斑马鱼血液疾病模型及应用[J]. 遗传, 2020, 42(8): 725-738. |
[4] | 鲍莉雯, 周一叶, 曾凡一. 基于CRISPR/Cas9技术的β-地中海贫血和血友病基因治疗研究进展[J]. 遗传, 2020, 42(10): 949-964. |
[5] | 亢逸,关桂君,洪云汉. 用模式生物青鳉概观硬骨鱼性别决定及性分化研究进展[J]. 遗传, 2017, 39(6): 441-454. |
[6] | 尹婷婷,王璐,王国栋. 传染性肿瘤研究进展[J]. 遗传, 2015, 37(11): 1086-1094. |
[7] | 余莉莉,董琬如,陈明会,孔祥阳. 性腺母细胞瘤的分子遗传机制研究进展[J]. 遗传, 2015, 37(11): 1105-1115. |
[8] | 李萌, 贺竹梅. 遗传学教学中性别决定关键基因的阐述[J]. 遗传, 2014, 36(6): 611-617. |
[9] | 王旭,熊敬维. 血管内皮细胞发育及分子机制[J]. 遗传, 2012, 34(9): 1114-1122. |
[10] | 杨晓丹,韩威,刘峰. DNA甲基化与脊椎动物胚胎发育[J]. 遗传, 2012, 34(9): 1108-1113. |
[11] | 杨波,贾丽丽,赵德超,孟丽云,刘雪锋,张燕军,张文广,李金泉. 奶山羊PIS遗传缺陷基因的检测及应用[J]. 遗传, 2012, 34(7): 895-900. |
[12] | 杨秀荣,蒋和生,杨宁. 鸟类性别决定与性别分化机制[J]. 遗传, 2012, 34(4): 407-411. |
[13] | 张勇,陈芳源,邓敏 . 斑马鱼血液肿瘤学的研究进展[J]. 遗传, 2009, 31(9): 889-895. |
[14] | 闫楠,朱必才,王宇峰. 棕色田鼠性别决定研究进展[J]. 遗传, 2009, 31(6): 587-594. |
[15] | 马洪雨,陈松林,李静,田永胜,季相山,张立敬. 半滑舌鳎雌性特异AFLP标记CseF783的克隆及其在遗传性别鉴定中的应用[J]. 遗传, 2009, 31(1): 88-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: