遗传 ›› 2020, Vol. 42 ›› Issue (8): 725-738.doi: 10.16288/j.yczz.20-148
收稿日期:
2020-05-25
修回日期:
2020-06-27
出版日期:
2020-08-20
发布日期:
2020-08-07
通讯作者:
王璐
E-mail:wanglu1@ihcams.ac.cn
作者简介:
郭佳妮,在读硕士研究生,专业方向:干细胞与再生医学。E-mail: 基金资助:
Received:
2020-05-25
Revised:
2020-06-27
Online:
2020-08-20
Published:
2020-08-07
Contact:
Wang Lu
E-mail:wanglu1@ihcams.ac.cn
Supported by:
摘要:
血液发育是一个复杂有序且保守的过程,由多种转录因子和信号通路协同调控,任何环节的失调都可能引起血液系统发育或功能缺陷,导致血液疾病的发生。斑马鱼(Danio rerio)造血过程及分子调控机制与哺乳动物高度保守。应用斑马鱼模拟致病因子的异常变化构建相关血液疾病模型,为探究疾病发生机制、肿瘤发生发展可视化研究及高通量化学筛选提供了有力的工具。本文概述了斑马鱼血液疾病模型及其应用,这些疾病模型不仅有助于完善对血液系统病理生理学、血液疾病发生分子机制的认识,也为临床相关恶性血液疾病的治疗提供了新思路。
郭佳妮, 刘帆, 王璐. 斑马鱼血液疾病模型及应用[J]. 遗传, 2020, 42(8): 725-738.
Jiani Guo, Fan Liu, Lu Wang. Zebrafish blood disease models and applications[J]. Hereditas(Beijing), 2020, 42(8): 725-738.
[1] |
Streisinger G, Walker C, Dower N, Knauber D, Singer F . Production of clones of homozygous diploid zebrafish (Brachydanio rerio). Nature, 1981,291(5813):293-296.
doi: 10.1038/291293a0 pmid: 7248006 |
[2] | Jia SJ, Meng AM . The development of zebrafish research in China. Hereditas(Beijing), 2012,34(9):1082-1088. |
贾顺姬, 孟安明 . 中国斑马鱼研究发展历程及现状. 遗传, 2012,34(9):1082-1088. | |
[3] | Li HH, Huang P, Dong W, Zhu ZY, Liu D . A brief history of zebrafish research——toward biomedicine. Hereditas(Beijing), 2013,35(4):310-320. |
李辉辉, 黄萍, 董巍, 朱作言, 刘东 . 斑马鱼研究走向生物医学. 遗传, 2013,35(4):310-320. | |
[4] |
Avagyan S, Zon LI . Fish to learn: insights into blood development and blood disorders from zebrafish hematopoiesis. Hum Gene Ther, 2016,27(4):287-294.
pmid: 27018965 |
[5] |
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assunção JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Ürün Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberländer M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nüsslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL. The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013,496(7446):498-503.
doi: 10.1038/nature12111 pmid: 23594743 |
[6] |
Wang H, Long Q, Marty SD, Sassa S, Lin S . A zebrafish model for hepatoerythropoietic porphyria. Nat Genet, 1998,20(3):239-243.
doi: 10.1038/3041 pmid: 9806541 |
[7] |
Brownlie A, Donovan A, Pratt SJ, Paw BH, Oates AC, Brugnara C, Witkowska HE, Sassa S, Zon LI . Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nat Genet, 1998,20(3):244-250.
doi: 10.1038/3049 pmid: 9806542 |
[8] |
Li MY, Zhao LY, Page-McCaw PS, Chen WB. Zebrafish genome engineering using the CRISPR-Cas9 system. Trends Genet, 2016,32(12):815-827.
doi: 10.1016/j.tig.2016.10.005 pmid: 27836208 |
[9] |
Flynt AS, Rao M, Patton JG . Blocking zebrafish microRNAs with morpholinos. Methods Mol Biol, 2017,1565:59-78.
pmid: 28364234 |
[10] | Shen Y, Xiao A, Huang P, Wang WY, Zhu ZY, Zang B . TALE nuclease engineering and targeted genome modification. Hereditas(Beijing), 2013,35(4):395-409. |
沈延, 肖安, 黄鹏, 王唯晔, 朱作言, 张博 . 类转录激活因子效应物核酸酶(TALEN)介导的基因组定点修饰技术. 遗传, 2013,35(4):395-409. | |
[11] | Sun YH, Zhang B, Luo LF, Shi DL, Wang H, Cui ZB, Huang HH, Cao Y, Shu XD, Zhang WQ, Zhou JF, Li Y, Du JL, Zhao QS, Chen J, Zhong HB, Zhong TP, Li L, Xiong JW, Peng JR, Xiao WH, Zhang J, Yao JH, Yin Z, Mo XM, Peng G, Zhu J, Chen Y, Zhou Y, Liu D, Pan WJ, Zhang YY, Ruan H, Liu F, Zhu ZY, Meng AM . Systematic genome editing of the genes on zebrafish Chromosome 1 by CRISPR/Cas9. Genome Res, 2019,30(1):118-126. |
[12] |
Orkin SH, Zon LI . Hematopoiesis: an evolving paradigm for stem cell biology. Cell, 2008,132(4):631-644.
pmid: 18295580 |
[13] |
Rowe RG, Mandelbaum J, Zon LI, Daley GQ . Engineering hematopoietic stem cells: Lessons from development. Cell Stem Cell, 2016,18(6):707-720.
doi: 10.1016/j.stem.2016.05.016 pmid: 27257760 |
[14] |
Jagannathan-Bogdan M, Zon LI . Hematopoiesis. Development, 2013,140(12):2463-2467.
pmid: 23715539 |
[15] |
Ransom DG, Bahary N, Niss K, Traver D, Burns C, Trede NS, Paffett-Lugassy N, Saganic WJ, Lim CA, Hersey C, Zhou Y, Barut BA, Lin S, Kingsley PD, Palis J, Orkin SH, Zon LI . The zebrafish moonshine gene encodes transcriptional intermediary factor 1γ, an essential regulator of hematopoiesis. PLoS Biol, 2004,2(8):e237.
doi: 10.1371/journal.pbio.0020237 pmid: 15314655 |
[16] |
Liao EC, Paw BH, Oates AC, Pratt SJ, Postlethwait JH, Zon LI . SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. Genes Dev, 1998,12(5):621-626.
doi: 10.1101/gad.12.5.621 pmid: 9499398 |
[17] |
Thompson MA, Ransom DG, Pratt SJ, MacLennan H, Kieran MW, Detrich HW, 3rd, Vail B, Huber TL, Paw B, Brownlie AJ, Oates AC, Fritz A, Gates MA, Amores A, Bahary N, Talbot WS, Her H, Beier DR, Postlethwait JH, Zon LI. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev Biol, 1998,197(2):248-269.
doi: 10.1006/dbio.1998.8887 pmid: 9630750 |
[18] |
Graf T . Differentiation plasticity of hematopoietic cells. Blood, 2002,99(9):3089-3101.
doi: 10.1182/blood.v99.9.3089 pmid: 11964270 |
[19] |
Lieschke GJ, Oates AC, Paw BH, Thompson MA, Hall NE, Ward AC, Ho RK, Zon LI, Layton JE . Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning. Dev Biol, 2002,246(2):274-295.
pmid: 12051816 |
[20] |
Kissa K, Herbomel P . Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature, 2010,464(7285):112-115.
pmid: 20154732 |
[21] |
Bertrand JY, Chi NC, Santoso B, Teng ST, Stainier DY, Traver D . Haematopoietic stem cells derive directly from aortic endothelium during development. Nature, 2010,464(7285):108-111.
doi: 10.1038/nature08738 pmid: 20154733 |
[22] |
Boatman S, Barrett F, Satishchandran S, Jing LL, Shestopalov I, Zon LI . Assaying hematopoiesis using zebrafish. Blood Cells Mol Dis, 2013,51(4):271-276.
doi: 10.1016/j.bcmd.2013.07.009 pmid: 23916372 |
[23] |
Burns CE, DeBlasio T, Zhou Y, Zhang J, Zon L, Nimer SD. Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators. Exp Hematol, 2002,30(12):1381-1389.
doi: 10.1016/s0301-472x(02)00955-4 pmid: 12482499 |
[24] |
Ren X, Gomez GA, Zhang B, Lin S . Scl isoforms act downstream of etsrp to specify angioblasts and definitive hematopoietic stem cells. Blood, 2010,115(26):5338-5346.
doi: 10.1182/blood-2009-09-244640 pmid: 20185582 |
[25] |
Zhen FH, Lan YH, Yan B, Zhang WQ, Wen ZL . Hemogenic endothelium specification and hematopoietic stem cell maintenance employ distinct Scl isoforms. Development, 2013,140(19):3977-3985.
doi: 10.1242/dev.097071 pmid: 24046317 |
[26] |
de Pater E, Kaimakis P, Vink CS, Yokomizo T, Yamada-Inagawa T, van der Linden R, Kartalaei PS, Camper SA, Speck N, Dzierzak E . Gata2 is required for HSC generation and survival. J Exp Med, 2013,210(13):2843-2850.
doi: 10.1084/jem.20130751 pmid: 24297996 |
[27] |
Lyons SE, Shue BC, Oates AC, Zon LI, Liu PP . A novel myeloid-restricted zebrafish CCAAT/enhancer-binding protein with a potent transcriptional activation domain. Blood, 2001,97(9):2611-2617.
pmid: 11313249 |
[28] |
Willett CE, Cherry JJ, Steiner LA . Characterization and expression of the recombination activating genes (rag1 and rag2) of zebrafish. Immunogenetics, 1997,45(6):394-404.
doi: 10.1007/s002510050221 pmid: 9089097 |
[29] |
Willett CE, Kawasaki H, Amemiya CT, Lin S, Steiner LA . Ikaros expression as a marker for lymphoid progenitors during zebrafish development. Dev Dyn, 2001,222(4):694-698.
doi: 10.1002/dvdy.1223 pmid: 11748838 |
[30] |
Langenau DM, Ferrando AA, Traver D, Kutok JL, Hezel JP, Kanki JP, Zon LI, Look AT, Trede NS . In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc Natl Acad Sci USA, 2004,101(19):7369-7374.
doi: 10.1073/pnas.0402248101 pmid: 15123839 |
[31] |
Ma DY, Wang L, Wang SF, Gao Y, Wei YL, Liu F . Foxn1 maintains thymic epithelial cells to support T-cell development via mcm2 in zebrafish. Proc Natl Acad Sci USA, 2012,109(51):21040-21045.
pmid: 23213226 |
[32] |
Wang SF, He QP, Ma DY, Xue YY, Liu F . Irf4 regulates the choice between T lymphoid-primed progenitor and myeloid lineage fates during embryogenesis. Dev Cell, 2015,34(6):621-631.
doi: 10.1016/j.devcel.2015.07.011 pmid: 26300447 |
[33] |
Lu XY, Zhang YL, Liu F, Wang L . Rac2 regulates the migration of T lymphoid progenitors to the thymus during zebrafish embryogenesis. J Immunol, 2020,204(9):2447-2454.
doi: 10.4049/jimmunol.1901494 pmid: 32198141 |
[34] |
Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, Behm FG, Pui CH, Downing JR, Gilliland DG, Lander ES, Golub TR, Look AT . Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell, 2002,1(1):75-87.
doi: 10.1016/s1535-6108(02)00018-1 pmid: 12086890 |
[35] |
Armstrong SA, Look AT . Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol, 2005,23(26):6306-6315.
pmid: 16155013 |
[36] |
Pui CH, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med, 2004,350(15):1535-1548.
pmid: 15071128 |
[37] |
Pelengaris S, Khan M . The many faces of c-MYC. Arch Biochem Biophys, 2003,416(2):129-136.
doi: 10.1016/s0003-9861(03)00294-7 pmid: 12893289 |
[38] |
Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP, Lin S, Prochownik E, Trede NS, Zon LI, Look AT . Myc-induced T cell leukemia in transgenic zebrafish. Science, 2003,299(5608):887-890.
doi: 10.1126/science.1080280 pmid: 12574629 |
[39] |
Langenau DM, Feng H, Berghmans S, Kanki JP, Kutok JL, Look AT . Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA, 2005,102(17):6068-6073.
doi: 10.1073/pnas.0408708102 pmid: 15827121 |
[40] |
Feng H, Langenau DM, Madge JA, Quinkertz A, Gutierrez A, Neuberg DS, Kanki JP, Look AT . Heat-shock induction of T-cell lymphoma/leukaemia in conditional Cre/lox-regulated transgenic zebrafish. Br J Haematol, 2007,138(2):169-175.
doi: 10.1111/j.1365-2141.2007.06625.x pmid: 17593023 |
[41] |
Jiang J, Wang JC, Yue M, Cai XL, Wang TC, Wu C, Su HX, Wang YW, Han M, Zhang YC, Zhu XF, Jiang P, Li P, Sun YH, Xiao WH, Feng H, Qing GL, Liu HD. Direct phosphorylation and stabilization of MYC by Aurora B kinase promote T-cell leukemogenesis. Cancer Cell, 2020, 37(2): 200-215.e5.
doi: 10.1016/j.ccell.2020.01.001 pmid: 32049046 |
[42] |
Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y, Dahlberg S, Neuberg D, Moreau LA, Winter SS, Larson R, Zhang JH, Protopopov A, Chin L, Pandolfi PP, Silverman LB, Hunger SP, Sallan SE, Look AT . High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood, 2009,114(3):647-650.
pmid: 19458356 |
[43] |
Gutierrez A, Grebliunaite R, Feng H, Kozakewich E, Zhu SZ, Guo F, Payne E, Mansour M, Dahlberg SE, Neuberg DS, den Hertog J, Prochownik EV, Testa JR, Harris M, Kanki JP, Look AT. Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia. J Exp Med, 2011,208(8):1595-1603.
doi: 10.1084/jem.20101691 |
[44] |
Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC . Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 2004,306(5694):269-271.
doi: 10.1126/science.1102160 pmid: 15472075 |
[45] |
Chen J, Jette C, Kanki JP, Aster JC, Look AT, Griffin JD . NOTCH1-induced T-cell leukemia in transgenic zebrafish. Leukemia, 2007,21(3):462-471.
doi: 10.1038/sj.leu.2404546 pmid: 17252014 |
[46] |
Frazer JK, Meeker ND, Rudner L, Bradley DF, Smith AC, Demarest B, Joshi D, Locke EE, Hutchinson SA, Tripp S, Perkins SL, Trede NS . Heritable T-cell malignancy models established in a zebrafish phenotypic screen. Leukemia, 2009,23(10):1825-1835.
doi: 10.1038/leu.2009.116 pmid: 19516274 |
[47] |
Gunz FW, Gunz JP, Veale AM, Chapman CJ, Houston IB . Familial leukaemia: a study of 909 families. Scand J Haematol, 1975,15(2):117-131.
doi: 10.1111/j.1600-0609.1975.tb01063.x pmid: 1188315 |
[48] |
Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH . Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst, 1994,86(21):1600-1608.
pmid: 7932824 |
[49] |
Horwitz M . The genetics of familial leukemia. Leukemia, 1997,11(8):1347-1359.
doi: 10.1038/sj.leu.2400707 pmid: 9264391 |
[50] |
Segel GB, Lichtman MA . Familial (inherited) leukemia, lymphoma, and myeloma: an overview. Blood Cells Mol Dis, 2004,32(1):246-261.
doi: 10.1016/j.bcmd.2003.10.005 pmid: 14757442 |
[51] |
Romana SP, Mauchauffé M, Le Coniat M, Chumakov I, Le Paslier D, Berger R, Bernard OA . The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood, 1995,85(12):3662-3670.
pmid: 7780150 |
[52] |
Becker M, Liu K, Tirado CA . The t(12;21)(p13;q22) in pediatric B-acute lymphoblastic leukemia: an update. J Assoc Genet Technol, 2017,43(3):99-109.
pmid: 28809761 |
[53] |
Andreasson P, Schwaller J, Anastasiadou E, Aster J, Gilliland DG . The expression of ETV6/CBFA2 (TEL/AML1) is not sufficient for the transformation of hematopoietic cell lines in vitro or the induction of hematologic disease in vivo. Cancer Genet Cytogenet, 2001,130(2):93-104.
doi: 10.1016/s0165-4608(01)00518-0 pmid: 11675129 |
[54] |
Sabaawy HE, Azuma M, Embree LJ, Tsai HJ, Starost MF, Hickstein DD . TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA, 2006,103(41):15166-15171.
doi: 10.1073/pnas.0603349103 pmid: 17015828 |
[55] |
Borga C, Park G, Foster C, Burroughs-Garcia J, Marchesin M, Shah R, Hasan A, Ahmed ST, Bresolin S, Batchelor L, Scordino T, Miles RR, Te Kronnie G, Regens JL, Frazer JK . Simultaneous B and T cell acute lymphoblastic leukemias in zebrafish driven by transgenic MYC: implications for oncogenesis and lymphopoiesis. Leukemia, 2019,33(2):333-347.
pmid: 30111845 |
[56] |
Liang J, Prouty L, Williams BJ, Dayton MA, Blanchard KL . Acute mixed lineage leukemia with an inv(8)(p11q13) resulting in fusion of the genes for MOZ and TIF2. Blood, 1998,92(6):2118-2122.
pmid: 9731070 |
[57] |
Downing JR . The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br J Haematol, 1999,106(2):296-308.
doi: 10.1046/j.1365-2141.1999.01377.x pmid: 10460585 |
[58] |
Borrow J, Shearman AM, Stanton VP, Becher R, Collins T, Williams AJ, Dubé I, Katz F, Kwong YL, Morris C, Ohyashiki K, Toyama K, Rowley J, Housman DE . The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet, 1996,12(2):159-167.
doi: 10.1038/ng0296-159 pmid: 8563754 |
[59] |
Kalev-Zylinska ML, Horsfield JA, Flores MV, Postlethwait JH, Vitas MR, Baas AM, Crosier PS, Crosier KE . Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development, 2002,129(8):2015-2030.
pmid: 11934867 |
[60] |
Tan J, Zhao L, Wang G, Li T, Li D, Xu Q, Chen X, Shang Z, Wang J, Zhou J . Human MLL-AF9 Overexpression Induces Aberrant hematopoietic expansion in zebrafish. Biomed Res Int, 2018,2018:6705842.
doi: 10.1155/2018/6705842 pmid: 30003105 |
[61] |
Zhuravleva J, Paggetti J, Martin L, Hammann A, Solary E, Bastie JN, Delva L . MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish. Br J Haematol, 2008,143(3):378-382.
doi: 10.1111/j.1365-2141.2008.07362.x pmid: 18729850 |
[62] |
Yeh JR, Munson KM, Chao YL, Peterson QP, Macrae CA, Peterson RT . AML1-ETO reprograms hematopoietic cell fate by downregulating scl expression. Development, 2008,135(2):401-410.
doi: 10.1242/dev.008904 pmid: 18156164 |
[63] |
Yeh JR, Munson KM, Elagib KE, Goldfarb AN, Sweetser DA, Peterson RT . Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation. Nat Chem Biol, 2009,5(4):236-243.
doi: 10.1038/nchembio.147 pmid: 19172146 |
[64] |
Forrester AM, Grabher C, McBride ER, Boyd ER, Vigerstad MH, Edgar A, Kai FB, Da'as SI, Payne E, Look AT, Berman JN. NUP98-HOXA9-transgenic zebrafish develop a myeloproliferative neoplasm and provide new insight into mechanisms of myeloid leukaemogenesis. Br J Haematol, 2011,155(2):167-181.
doi: 10.1111/j.1365-2141.2011.08810.x pmid: 21810091 |
[65] |
Deveau AP, Forrester AM, Coombs AJ, Wagner GS, Grabher C, Chute IC, Léger D, Mingay M, Alexe G, Rajan V, Liwski R, Hirst M, Stegmaier K, Lewis SM, Look AT, Berman JN . Epigenetic therapy restores normal hematopoiesis in a zebrafish model of NUP98-HOXA9-induced myeloid disease. Leukemia, 2015,29(10):2086-2097.
doi: 10.1038/leu.2015.126 pmid: 26017032 |
[66] |
Hirvonen H, Hukkanen V, Salmi TT, Mäkelä TP, Pelliniemi TT, Knuutila S, Alitalo R . Expression of L-myc and N-myc proto-oncogenes in human leukemias and leukemia cell lines. Blood, 1991,78(11):3012-3020.
pmid: 1954386 |
[67] |
Shen LJ, Chen FY, Zhang Y, Cao LF, Kuang Y, Zhong M, Wang T, Zhong H . MYCN transgenic zebrafish model with the characterization of acute myeloid leukemia and altered hematopoiesis. PLoS One, 2013,8(3):e59070.
doi: 10.1371/journal.pone.0059070 pmid: 23554972 |
[68] |
O'Sullivan J, Mead AJ. Heterogeneity in myeloproliferative neoplasms: causes and consequences. Adv Biol Regul, 2019,71:55-68.
doi: 10.1016/j.jbior.2018.11.007 pmid: 30528537 |
[69] |
Flotho C, Valcamonica S, Mach-Pascual S, Schmahl G, Corral L, Ritterbach J, Hasle H, Aricò M, Biondi A, Niemeyer CM . RAS mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia, 1999,13(1):32-37.
doi: 10.1038/sj.leu.2401240 pmid: 10049057 |
[70] |
Loh ML, Sakai DS, Flotho C, Kang M, Fliegauf M, Archambeault S, Mullighan CG, Chen L, Bergstraesser E, Bueso-Ramos CE, Emanuel PD, Hasle H, Issa JP, van den Heuvel-Eibrink MM, Locatelli F, Stary J, Trebo M, Wlodarski M, Zecca M, Shannon KM, Niemeyer CM. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood, 2009,114(9):1859-1863.
doi: 10.1182/blood-2009-01-198416 pmid: 19571318 |
[71] |
Skoda RC, Duek A, Grisouard J . Pathogenesis of myeloproliferative neoplasms. Exp Hematol, 2015,43(8):599-608.
doi: 10.1016/j.exphem.2015.06.007 pmid: 26209551 |
[72] |
Vainchenker W, Kralovics R . Genetic basis and molecularpathophysiology of classical myeloproliferative neoplasms. Blood, 2017,129(6):667-679.
doi: 10.1182/blood-2016-10-695940 pmid: 28028029 |
[73] |
Lim KH, Chang YC, Chiang YH, Lin HC, Chang CY, Lin CS, Huang L, Wang WT, Gon-Shen Chen C, Chou WC, Kuo YY,. Expression of CALR mutants causes mpl-dependent thrombocytosis in zebrafish. Blood Cancer J, 2016,6(10):e481.
doi: 10.1038/bcj.2016.83 pmid: 27716741 |
[74] |
Alghisi E, Distel M, Malagola M, Anelli V, Santoriello C, Herwig L, Krudewig A, Henkel CV, Russo D, Mione MC . Targeting oncogene expression to endothelial cells induces proliferation of the myelo-erythroid lineage by repressing the Notch pathway. Leukemia, 2013,27(11):2229-2241.
doi: 10.1038/leu.2013.132 pmid: 23625115 |
[75] |
Zhao F, Shi Y, Huang Y, Zhan Y, Zhou L, Li Y, Wan Y, Li H, Huang H, Ruan H, Luo L, Li L . Irf8 regulates the progression of myeloproliferative neoplasm-like syndrome via Mertk signaling in zebrafish. Leukemia, 2018,32(1):149-158.
doi: 10.1038/leu.2017.189 pmid: 28626217 |
[76] |
Peng X, Dong M, Ma L, Jia XE, Mao J, Jin C, Chen Y, Gao L, Liu X, Ma K, Wang L, Du T, Jin Y, Huang Q, Li K, Zon LI, Liu T, Deng M, Zhou Y, Xi X, Zhou Y, Chen S . A point mutation of zebrafish c-cbl gene in the ring finger domain produces a phenotype mimicking human myeloproliferative disease. Leukemia, 2015,29(12):2355-2365.
doi: 10.1038/leu.2015.154 pmid: 26104663 |
[77] |
Doll DC, List AF . Myelodysplastic syndromes. West J Med, 1989,151(2):161-167.
pmid: 2672599 |
[78] |
Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, Sato Y, Sato-Otsubo A, Kon A, Nagasaki M, Chalkidis G, Suzuki Y, Shiosaka M, Kawahata R, Yamaguchi T, Otsu M, Obara N, Sakata-Yanagimoto M, Ishiyama K, Mori H, Nolte F, Hofmann WK, Miyawaki S, Sugano S, Haferlach C, Koeffler HP, Shih LY, Haferlach T, Chiba S, Nakauchi H, Miyano S, Ogawa S . Frequent pathway mutations of splicing machinery in myelodysplasia. Nature, 2011,478(7367):64-69.
doi: 10.1038/nature10496 pmid: 21909114 |
[79] |
Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, Schnittger S, Sanada M, Kon A, Alpermann T, Yoshida K, Roller A, Nadarajah N, Shiraishi Y, Shiozawa Y, Chiba K, Tanaka H, Koeffler HP, Klein HU, Dugas M, Aburatani H, Kohlmann A, Miyano S, Haferlach C, Kern W, Ogawa S . Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia, 2014,28(2):241-247.
doi: 10.1038/leu.2013.336 pmid: 24220272 |
[80] |
Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, Yoon CJ, Ellis P, Wedge DC, Pellagatti A, Shlien A, Groves MJ, Forbes SA, Raine K, Hinton J, Mudie LJ, McLaren S, Hardy C, Latimer Porta C, Della MG, O'Meara S, Ambaglio I, Galli A, Butler AP, Walldin G, Teague JW, Quek L, Sternberg A, Gambacorti-Passerini C, Cross NC, Green AR, Boultwood J, Vyas P, Hellstrom-Lindberg E, Bowen D, Cazzola M, Stratton MR, Campbell PJ. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood, 2013,122(22):3616-3627.
doi: 10.1182/blood-2013-08-518886 pmid: 24030381 |
[81] |
Cazzola M, Rossi M, Malcovati L . Biologic and clinical significance of somatic mutations of SF3B1 in myeloid and lymphoid neoplasms. Blood, 2013,121(2):260-269.
doi: 10.1182/blood-2012-09-399725 pmid: 23160465 |
[82] |
De La Garza A, Cameron RC, Nik S, Payne SG, Bowman TV. Spliceosomal component Sf3b1 is essential for hematopoietic differentiation in zebrafish. Exp Hematol, 2016, 44(9): 826-837.e4.
doi: 10.1016/j.exphem.2016.05.012 pmid: 27260753 |
[83] |
Keightley MC, Crowhurst MO, Layton JE, Beilharz T, Markmiller S, Varma S, Hogan BM, de Jong-Curtain TA, Heath JK, Lieschke GJ. In vivo mutation of pre-mRNA processing factor 8 (Prpf8) affects transcript splicing, cell survival and myeloid differentiation. FEBS Lett, 2013,587(14):2150-2157.
doi: 10.1016/j.febslet.2013.05.030 pmid: 23714367 |
[84] |
Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, Figueroa ME, Vasanthakumar A, Patel J, Zhao XY, Perna F, Pandey S, Madzo J, Song CX, Dai Q, He C, Ibrahim S, Beran M, Zavadil J, Nimer SD, Melnick A, Godley LA, Aifantis I, Levine RL . Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell, 2011,20(1):11-24.
doi: 10.1016/j.ccr.2011.06.001 pmid: 21723200 |
[85] |
Gjini E, Mansour MR, Sander JD, Moritz N, Nguyen AT, Kesarsing M, Gans E, He SN, Chen S, Ko M, Kuang YY, Yang S, Zhou Y, Rodig S, Zon LI, Joung JK, Rao A, Look AT . A zebrafish model of myelodysplastic syndrome produced through tet2 genomic editing. Mol Cell Biol, 2015,35(5):789-804.
doi: 10.1128/MCB.00971-14 pmid: 25512612 |
[86] |
Machová Poláková K, Lopotová T, Klamová H, Burda P, Trněný M, Stopka T, Moravcová J . Expression patterns of microRNAs associated with CML phases and their disease related targets. Mol Cancer, 2011,10:41.
doi: 10.1186/1476-4598-10-41 pmid: 21501493 |
[87] |
Clappier E, Cuccuini W, Kalota A, Crinquette A, Cayuela JM, Dik WA, Langerak AW, Montpellier B, Nadel B, Walrafen P, Delattre O, Aurias A, Leblanc T, Dombret H, Gewirtz AM, Baruchel A, Sigaux F, Soulier J . The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood, 2007,110(4):1251-1261.
doi: 10.1182/blood-2006-12-064683 pmid: 17452517 |
[88] |
Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, Cauwelier B, Lambert F, Mentens N, Beverloo HB, Pieters R, Speleman F, Odero MD, Bauters M, Froyen G, Marynen P, Vandenberghe P, Wlodarska I, Meijerink JP, Cools J . Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet, 2007,39(5):593-595.
doi: 10.1038/ng2025 pmid: 17435759 |
[89] |
Liu W, Wu M, Huang Z, Lian J, Chen J, Wang T, Leung AY, Liao Y, Zhang Z, Liu Q, Yen K, Lin S, Zon LI, Wen Z, Zhang Y, Zhang W. c-myb hyperactivity leads to myeloid and lymphoid malignancies in zebrafish. Leukemia, 2017,31(1):222-233.
doi: 10.1038/leu.2016.170 pmid: 27457538 |
[90] |
Smith AC, Raimondi AR, Salthouse CD, Ignatius MS, Blackburn JS, Mizgirev IV, Storer NY, de Jong JL, Chen AT, Zhou Y, Revskoy S, Zon LI, Langenau DM. High-throughput cell transplantation establishes that tumor-initiating cells are abundant in zebrafish T-cell acute lymphoblastic leukemia. Blood, 2010,115(16):3296-3303.
doi: 10.1182/blood-2009-10-246488 pmid: 20056790 |
[91] |
Novoa B, Figueras A . Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases. Adv Exp Med Biol, 2012,946:253-275.
doi: 10.1007/978-1-4614-0106-3_15 pmid: 21948373 |
[92] |
White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns CE, Zon LI. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell, 2008,2(2):183-189.
doi: 10.1016/j.stem.2007.11.002 pmid: 18371439 |
[93] |
Clappier E, Gerby B, Sigaux F, Delord M, Touzri F, Hernandez L, Ballerini P, Baruchel A, Pflumio F, Soulier J . Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse. J Exp Med, 2011,208(4):653-661.
doi: 10.1084/jem.20110105 pmid: 21464223 |
[94] |
Notta F, Mullighan CG, Wang JC, Poeppl A, Doulatov S, Phillips LA, Ma J, Minden MD, Downing JR, Dick JE . Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature, 2011,469(7330):362-367.
doi: 10.1038/nature09733 pmid: 21248843 |
[95] |
Blackburn JS, Liu S, Raiser DM, Martinez SA, Feng H, Meeker ND, Gentry J, Neuberg D, Look AT, Ramaswamy S, Bernards A, Trede NS, Langenau DM . Notch signaling expands a pre-malignant pool of T-cell acute lymphoblastic leukemia clones without affecting leukemia-propagating cell frequency. Leukemia, 2012,26(9):2069-2078.
doi: 10.1038/leu.2012.116 pmid: 22538478 |
[96] |
Blackburn JS, Liu SL, Wilder JL, Dobrinski KP, Lobbardi R, Moore FE, Martinez SA, Chen EY, Lee C, Langenau DM . Clonal evolution enhances leukemia-propagating cell frequency in T cell acute lymphoblastic leukemia through Akt/mTORC1 pathway activation. Cancer Cell, 2014,25(3):366-378.
doi: 10.1016/j.ccr.2014.01.032 pmid: 24613413 |
[97] |
Moore JC, Tang Q, Yordán NT, Moore FE, Garcia EG, Lobbardi R, Ramakrishnan A, Marvin DL, Anselmo A, Sadreyev RI, Langenau DM . Single-cell imaging of normal and malignant cell engraftment into optically clear prkdc-null SCID zebrafish. J Exp Med, 2016,213(12):2575-2589.
doi: 10.1084/jem.20160378 pmid: 27810924 |
[98] |
Tang Q, Abdelfattah NS, Blackburn JS, Moore JC, Martinez SA, Moore FE, Lobbardi R, Tenente IM, Ignatius MS, Berman JN, Liwski RS, Houvras Y, Langenau DM . Optimized cell transplantation using adult rag2 mutant zebrafish. Nat Methods, 2014,11(8):821-824.
doi: 10.1038/NMETH.3031 pmid: 25042784 |
[99] |
Yan C, Brunson DC, Tang Q, Do D, Iftimia NA, Moore JC, Hayes MN, Welker AM, Garcia EG, Dubash TD, Hong X, Drapkin BJ, Myers DT, Phat S, Volorio A, Marvin DL, Ligorio M, Dershowitz L, McCarthy KM, Karabacak MN, Fletcher JA, Sgroi DC, Iafrate JA, Maheswaran S, Dyson NJ, Haber DA, Rawls JF, Langenau DM,. Visualizing engrafted human cancer and therapy responses in immunodeficient zebrafish. Cell, 2019, 177(7): 1903-1914. 14.
doi: 10.1016/j.cell.2019.04.004 pmid: 31031007 |
[100] |
Kaufman CK, White RM, Zon L . Chemical genetic screening in the zebrafish embryo. Nat Protoc, 2009,4(10):1422-1432.
doi: 10.1038/nprot.2009.144 pmid: 19745824 |
[101] |
MacRae CA, Peterson RT . Zebrafish-based small molecule discovery. Chem Biol, 2003,10(10):901-908.
doi: 10.1016/j.chembiol.2003.10.003 pmid: 14583256 |
[102] | Xin SC, Zhao YQ, Li S, Lin S, Zhong HB . Application of zebrafish models in drug screening. Hereditas(Beijing), 2012,34(9):1144-1152. |
辛胜昌, 赵艳秋, 李松, 林硕, 仲寒冰 . 斑马鱼模型在药物筛选中的应用. 遗传, 2012,34(9):1144-1152. | |
[103] |
North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang IH, Grosser T, Fitzgerald GA, Daley GQ, Orkin SH, Zon LI . Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature, 2007,447(7147):1007-1011.
doi: 10.1038/nature05883 pmid: 17581586 |
[104] |
Goessling W, Allen RS, Guan X, Jin P, Uchida N, Dovey M, Harris JM, Metzger ME, Bonifacino AC, Stroncek D, Stegner J, Armant M, Schlaeger T, Tisdale JF, Zon LI, Donahue RE, North TE . Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell, 2011,8(4):445-458.
doi: 10.1016/j.stem.2011.02.003 pmid: 21474107 |
[105] |
Cutler C, Multani P, Robbins D, Kim HT, Le T, Hoggatt J, Pelus LM, Desponts C, Chen YB, Rezner B, Armand P, Koreth J, Glotzbecker B, Ho VT, Alyea E, Isom M, Kao G, Armant M, Silberstein L, Hu PR, Soiffer RJ, Scadden DT, Ritz J, Goessling W, North TE, Mendlein J, Ballen K, Zon LI, Antin JH, Shoemaker DD . Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood, 2013,122(17):3074-3081.
doi: 10.1182/blood-2013-05-503177 pmid: 23996087 |
[106] |
Ridges S, Heaton WL, Joshi D, Choi H, Eiring A, Batchelor L, Choudhry P, Manos EJ, Sofla H, Sanati A, Welborn S, Agarwal A, Spangrude GJ, Miles RR, Cox JE, Frazer JK, Deininger M, Balan K, Sigman M, Müschen M, Perova T, Johnson R, Montpellier B, Guidos CJ, Jones DA, Trede NS . Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood, 2012,119(24):5621-5631.
doi: 10.1182/blood-2011-12-398818 pmid: 22490804 |
[107] |
Pruvot B, Jacquel A, Droin N, Auberger P, Bouscary D, Tamburini J, Muller M, Fontenay M, Chluba J, Solary E . Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica, 2011,96(4):612-616.
doi: 10.3324/haematol.2010.031401 pmid: 21228037 |
[108] |
Callahan SJ, Tepan S, Zhang YM, Lindsay H, Burger A, Campbell NR, Kim IS, Hollmann TJ, Studer L, Mosimann C, White RM . Cancer modeling by transgene electroporation in adult zebrafish (TEAZ). Dis Model Mech, 2018,11(9).
doi: 10.1242/dmm.031534 pmid: 30061196 |
[109] |
Gore AV, Pillay LM, Venero Galanternik M, Weinstein BM . The zebrafish: a fintastic model for hematopoietic development and disease. Wiley Interdiscip Rev Dev Biol, 2018,7(3):e312.
doi: 10.1002/wdev.312 pmid: 29436122 |
[110] |
Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Mælandsmo GM, Roman-Roman S, Seoane J, Trusolino L, Villanueva A. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov, 2014,4(9):998-1013.
doi: 10.1158/2159-8290.CD-14-0001 pmid: 25185190 |
[111] |
Siolas D, Hannon GJ . Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res, 2013,73(17):5315-5319.
doi: 10.1158/0008-5472.CAN-13-1069 pmid: 23733750 |
[112] |
Bentley VL, Veinotte CJ, Corkery DP, Pinder JB, LeBlanc MA, Bedard K, Weng AP, Berman JN, Dellaire G. Focused chemical genomics using zebrafish xenotransplantation as a pre-clinical therapeutic platform for T-cell acute lymphoblastic leukemia. Haematologica, 2015,100(1):70-76.
doi: 10.3324/haematol.2014.110742 pmid: 25281505 |
[113] |
Corkery DP, Dellaire G, Berman JN . Leukaemia xenotransplantation in zebrafish-chemotherapy response assay in vivo. Br J Haematol, 2011,153(6):786-789.
doi: 10.1111/j.1365-2141.2011.08661.x pmid: 21517816 |
[114] |
Hamilton N, Sabroe I, Renshaw SA . A method for transplantation of human HSCs into zebrafish, to replace humanised murine transplantation models. F1000Res, 2018,7:594.
doi: 10.12688/f1000research.14507.2 pmid: 29946444 |
[115] |
Rajan V, Melong N, Wong WH, King B, Tong RS, Mahajan N, Gaston D, Lund T, Rittenberg D, Dellaire G, Campbell CJV, Druley T, Berman JN . Humanized zebrafish enhance human hematopoietic stem cell survival and promote acute myeloid leukemia clonal diversity. Haematologica, 2019, doi: 10.3324/haematol.2019.223040.
doi: 10.3324/haematol.2020.253781 pmid: 32732367 |
[116] |
Mizgirev I, Revskoy S . Generation of clonal zebrafish lines and transplantable hepatic tumors. Nat Protoc, 2010,5(3):383-394.
doi: 10.1038/nprot.2010.8 pmid: 20203658 |
[117] |
van Rooijen E, Fazio M, Zon LI . From fish bowl to bedside: The power of zebrafish to unravel melanoma pathogenesis and discover new therapeutics. Pigment Cell Melanoma Res, 2017,30(4):402-412.
doi: 10.1111/pcmr.12592 pmid: 28379616 |
[118] |
Li D, March ME, Gutierrez-Uzquiza A, Kao C, Seiler C, Pinto E, Matsuoka LS, Battig MR, Bhoj EJ, Wenger TL, Tian L, Robinson N, Wang TC, Liu YC, Weinstein BM, Swift M, Jung HM, Kaminski CN, Chiavacci R, Perkins JA, Levine MA, Sleiman PMA, Hicks PJ, Strausbaugh JT, Belasco JB, Dori Y, Hakonarson H . ARAF recurrent mutation causes central conducting lymphatic anomaly treatable with a MEK inhibitor. Nat Med, 2019,25(7):1116-1122.
doi: 10.1038/s41591-019-0479-2 pmid: 31263281 |
[1] | 李凯伦, 卢荆奥, 陈小辉, 张文清, 刘伟. 尿囊素促进破骨细胞缺陷斑马鱼骨折修复[J]. 遗传, 2023, 45(4): 341-353. |
[2] | 卢荆澳, 黄春燕, 林芷茵, 唐政, 马宁, 黄志斌. cd99l2基因调控斑马鱼白细胞组织间的迁移机制[J]. 遗传, 2022, 44(9): 798-809. |
[3] | 郑鹏飞, 谢海波, 朱盼盼, 赵呈天. 斑马鱼神经底板处神经元的分布及特征[J]. 遗传, 2022, 44(6): 510-520. |
[4] | 张婷婷, 刘峰. 斑马鱼蛋白酪氨酸硫酸化修饰的检测方法研究[J]. 遗传, 2022, 44(2): 178-186. |
[5] | 贾婷婷, 雷蕾, 吴歆媛, 蔡顺有, 陈艺璇, 薛钰. 二甲双胍对斑马鱼骨骼发育及损伤修复的机制研究[J]. 遗传, 2022, 44(1): 68-79. |
[6] | 郑燕森, 卓林刚, 李大力, 刘明耀. 炎性肠病易感基因GPR35在肠炎发生发展中的功能研究[J]. 遗传, 2021, 43(2): 169-181. |
[7] | 王玉杰, 周小坤, 徐丹. 常染色体隐性遗传小头畸形相关蛋白研究进展[J]. 遗传, 2019, 41(10): 905-918. |
[8] | 熊凤,谢训卫,潘鲁媛,李阔宇,柳力月,张昀,李玲璐,孙永华. 国家斑马鱼资源中心的资源、技术和服务建设[J]. 遗传, 2018, 40(8): 683-692. |
[9] | 许璟瑾, 张文娟, 王静怡, 姚丽云, 潘裕添, 欧一新, 薛钰, . 金线莲抑制斑马鱼黑色素形成的活性组分筛选及机理研究[J]. 遗传, 2017, 39(12): 1178-1187. |
[10] | 刘姗姗, 张翠珍, 彭刚. 饥饿对幼年斑马鱼下丘脑摄食相关性神经肽表达的影响[J]. 遗传, 2016, 38(9): 821-830. |
[11] | 张峰华,王厚鹏,黄思雨,熊凤,朱作言,孙永华. 两种密码子优化的Cas9编码基因在斑马鱼胚胎中基因敲除效率的比较[J]. 遗传, 2016, 38(2): 144-154. |
[12] | 周金伟, 徐绮嫔, 姚婧, 余树民, 曹随忠. CRISPR/Cas9基因组编辑技术及其在动物基因组定点修饰中的应用[J]. 遗传, 2015, 37(10): 1011-1020. |
[13] | 顾爱华 严丽锋. 斑马鱼在再生医学研究中的应用及进展[J]. 遗传, 2013, 35(7): 856-866. |
[14] | 李礼,罗凌飞. 以斑马鱼为模式动物研究器官的发育与再生[J]. 遗传, 2013, 35(4): 421-432. |
[15] | 徐冉冉 张从伟 曹羽 王强. 缺失mir122抑制斑马鱼肝脏前体细胞向肝细胞分化[J]. 遗传, 2013, 35(4): 488-494. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: