遗传 ›› 2023, Vol. 45 ›› Issue (12): 1128-1146.doi: 10.16288/j.yczz.23-223
杜文珍1(), 李元敬2, 吴佳玲1, 陈思羽1, 姜亮1, 刘刚1, 谢宁1(
)
收稿日期:
2023-08-21
修回日期:
2023-10-28
出版日期:
2023-12-20
发布日期:
2023-11-10
通讯作者:
谢宁
E-mail:2100251038@email.szu.edu.cn;ning.xie@szu.edu.cn
作者简介:
杜文珍,硕士研究生,专业方向:微生物遗传学。E-mail: 基金资助:
Wenzhen Du1(), Yuanjing Li2, Jialing Wu1, Siyu Chen1, Liang Jiang1, Gang Liu1, Ning Xie1(
)
Received:
2023-08-21
Revised:
2023-10-28
Published:
2023-12-20
Online:
2023-11-10
Contact:
Ning Xie
E-mail:2100251038@email.szu.edu.cn;ning.xie@szu.edu.cn
Supported by:
摘要:
辅助活性蛋白家族(auxiliary activity family,AA family)中的裂解多糖单加氧酶(lytic polysaccharide monooxygenase, LPMO)能催化纤维素、几丁质和淀粉等多种难降解碳水化合物的氧化解聚。尽管目前对LPMO的酶学研究较多,但对LPMO基因失活的研究却鲜有报道。本研究利用同源重组方法定点敲除丝状真菌Podospora anserina中AA11家族的5个LPMO基因PaLPMO11A (Pa_4_4790)、PaLPMO11B (Pa_1_5310)、PaLPMO11C (Pa_2_7840)、PaLPMO11D (Pa_2_8610)和PaLPMO11E (Pa_3_9420),分别构建了单突变体ΔPaLPMO11A (ΔA)、ΔPaLPMO11B (ΔB)、ΔPaLPMO11C (ΔC)、ΔPaLPMO11D (ΔD)和ΔPaLPMO11E (ΔE),然后通过遗传杂交构建所有多基因突变体。通过在不同碳源培养基上的表型分析、DAB和NBT染色以及纤维素酶活测定分析野生型菌株与突变型菌株在生长速率、有性生殖、氧化应激和纤维素降解能力等方面的差异,揭示LPMO11基因在P. anserina菌株的生长发育和木质纤维素降解过程中的作用。实验结果表明,在不同纤维素碳源上,ΔBΔCΔE、ΔAΔBΔCΔE、ΔAΔCΔDΔE和ΔAΔBΔCΔDΔE突变型菌株的有性生殖能力降低,其余突变型菌株的孢子萌发效率、生长速率和生殖能力几乎没有差异。PaLPMO11家族5个基因的同时缺失,会导致菌株利用各种碳源的能力明显降低、生长速率降低、孢子萌发率降低、子实体数减少、部分子实体发育异常、寿命缩短和降解纤维素的能力显著下降,但仍有野生型45%以上的总纤维素酶活力。上述结果表明,LPMO11基因可能参与P. anserina的生长发育、有性生殖、衰老和纤维素降解过程。本研究为系统阐述丝状真菌P. anserina中木质纤维素降解的调控机制提供参考。
杜文珍, 李元敬, 吴佳玲, 陈思羽, 姜亮, 刘刚, 谢宁. 丝状真菌Podospora anserina AA11家族裂解多糖单加氧酶基因的鉴定和功能研究[J]. 遗传, 2023, 45(12): 1128-1146.
Wenzhen Du, Yuanjing Li, Jialing Wu, Siyu Chen, Liang Jiang, Gang Liu, Ning Xie. Identification and functional study of AA11 family polysaccharide monooxygenase genes in filamentous fungus Podospora anserina[J]. Hereditas(Beijing), 2023, 45(12): 1128-1146.
表1
本研究使用的引物"
引物名称 | 序列 (5′→3′) | 用途 |
---|---|---|
PaLPMO11A_1F | CATTGACGCTCTCACCTTGG | 敲除PaLPMO11A基因 |
PaLPMO11A_2R | CTATTTAACGACCCTGCCCTGAACCGATGCCCGACCTTCTGGTCCT | |
PaLPMO11A_MKF | AGGACCAGAAGGTCGGGCATCGGTTCAGGGCAGGGTCGTTAAATAG | |
PaLPMO11A_MKR | AGGTGACTACGATCCAGGCGCATCGAACTGGATCTCAACAGCGGTAAG | |
PaLPMO11A_3F | CTTACCGCTGTTGAGATCCAGTTCGATGCGCCTGGATCGTAGTCACCT | |
PaLPMO11A_4R | CCAGCCAACTTCCTCGTCAT | |
PaLPMO11B_1F | CCCAGACAATGACCACACGAGT | 敲除PaLPMO11B基因 |
PaLPMO11B_2R | CTATTTAACGACCCTGCCCTGAACCGCTGCTGCATGTCACTGAAGG | |
PaLPMO11B_MkF | CCTTCAGTGACATGCAGCAGCGGTTCAGGGCAGGGTCGTTAAATAG | |
PaLPMO11B_MkR | CAAGGGTAGCTGATGAGGCACATCGAACTGGATCTCAACAGCGGTAAG | |
PaLPMO11B_3F | CTTACCGCTGTTGAGATCCAGTTCGATGTGCCTCATCAGCTACCCTTG | |
PaLPMO11B_4R | CCGCGGTGAAGCTTGACACT | |
PaLPMO11C_1F | ACAGGGATCATCGGTACAACTG | 敲除PaLPMO11C基因 |
PaLPMO11C_2R | CTATTTAACGACCCTGCCCTGAACCGCTGGTTAGGTTCGAAGTCGAGT | |
PaLPMO11C_MKF | ACTCGACTTCGAACCTAACCAGCGGTTCAGGGCAGGGTCGTTAAATAG | |
PaLPMO11C_MKR | CTGGCTTCCAGTCGTCGATGCATCGAACTGGATCTCAACAGCGGTAAG | |
PaLPMO11C_3F | CTTACCGCTGTTGAGATCCAGTTCGATGCATCGACGACTGGAAGCCAG | |
PaLPMO11C_4R | CATCAGAACGACTCGCAGAT | |
PaLPMO11D_1F | AGAACATCCAACGTGCGTGG | 敲除PaLPMO11D基因 |
PaLPMO11D_2R | CTATTTAACGACCCTGCCCTGAACCGAATGACAGGACAAGTGCGGT | |
PaLPMO11D_MKF | ACCGCACTTGTCCTGTCATTCGGTTCAGGGCAGGGTCGTTAAATAG | |
PaLPMO11D_MKR | CCTGACAATGCTGAAACGACTGCATCGAACTGGATCTCAACAGCGGTAAG | |
PaLPMO11D_3F | CTTACCGCTGTTGAGATCCAGTTCGATGCAGTCGTTTCAGCATTGTCAGG | |
PaLPMO11D_4R | GCATCTCCATCAGCGCAGTG | |
PaLPMO11E_1F | ACTAGAACGGCTCAGGCACACT | 敲除PaLPMO11E基因 |
PaLPMO11E_2R | CTATTTAACGACCCTGCCCTGAACCGCGGATAGGCGAGTGATCGAT | |
PaLPMO11E_MKF | ATCGATCACTCGCCTATCCGCGGTTCAGGGCAGGGTCGTTAAATAG | |
PaLPMO11E_MKR | AGCTGCAGAAGTCCATCTCCCATCGAACTGGATCTCAACAGCGGTAAG | |
PaLPMO11E_3F | CTTACCGCTGTTGAGATCCAGTTCGATGGGAGATGGACTTCTGCAGCT | |
PaLPMO11E_4R | GCATGATATTCCCTCCACAGGT | |
5 Test | TGAGAAGCACACGGTCAC | 检测目的基因的敲除 |
3 Test | TCGGGGCGAAAACTCTC | |
verify_PaLPMO11A_1F | AGGCCGGATACATACCGTTG | 验证PaLPMO11A基因敲除突变体 |
verify_PaLPMO11A_2R | CACAATGTCCTCCAACACCG | |
verify_PaLPMO11B_1F | ACCTTGCGAGAAGGTTGGTG | 验证PaLPMO11B基因敲除突变体 |
verify_PaLPMO11B_2R | GAGGGAGGTGGCCTCTGAT | |
verify_PaLPMO11C_1F | GAGCAAGTCCAGCCCTGACT | 验证PaLPMO11C基因敲除突变体 |
verify_PaLPMO11C_2R | GCAGCGCAATCGTCGTGT | |
verify_PaLPMO11D_1F | CAGCTGAGGCTAATGATCCG | 验证PaLPMO11D基因敲除突变体 |
verify_PaLPMO11D_2R | CTCCTCGGCAGGTCACAAGT | |
verify_PaLPMO11E_1F | AACCAGGTTCCCCAGGATCT | 验证PaLPMO11E基因敲除突变体 |
verify_PaLPMO11E_2R | ATAACAGGCAGCTTGGCCTT |
图7
WT和部分PaLPMO11E基因缺失突变型菌株的子囊孢子密度图、显微观察、子实体数量统计与子囊孢子萌发率统计 A:野生型和部分PaLPMO11E基因缺失突变型菌株的子囊孢子密度图。菌株于木屑培养基上培养8天后会将孢子喷发至培养皿盖子上,对接有子囊孢子的培养皿盖拍照。B:野生型和突变型菌株于倒置显微镜下的观察结果。不同交配型菌株于M2培养基27℃光照培养5天后,置于倒置显微镜下观察子实体形态与数量。标尺:500 μm。C:WT及ΔΔBΔCΔDΔE子实体放大图。在M2培养基27℃光照培养5天后,挑取子实体置于载玻片上,用盖玻片盖上碾压,置于倒置显微镜下观察并拍照。标尺:100 μm。D:子实体数量统计。不同交配型菌株在M2培养基上27℃光照7天后,在显微镜下对野生型和突变型菌株的子实体数量进行计数统计。E:子囊孢子萌发率统计。将不同交配型菌株在M2培养基上进行杂交,培养7天后开始喷发子囊孢子,用接种孢子培养基接住喷发出来的子囊孢子。每个菌株挑取200个子囊孢子于萌发孢子培养基上黑暗培养1天后,统计子囊孢子的萌发率。t检验: *P<0.05,**P<0.01,***P<0.001。"
[1] |
Tran MH, Yu JH, Lee EY. Microwave-assisted two-step liquefaction of acetone-soluble lignin of silvergrass saccharification residue for production of biopolyol and biopolyurethane. Polymers (Basel), 2021, 13(9): 1491.
doi: 10.3390/polym13091491 |
[2] |
Francois JM, Alkim C, Morin N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. Biotechnol Biofuels, 2020, 13: 118.
doi: 10.1186/s13068-020-01744-6 pmid: 32670405 |
[3] |
Zhang ZR, Song JL, Han BX. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem Rev, 2017, 117(10): 6834-80.
doi: 10.1021/acs.chemrev.6b00457 pmid: 28535680 |
[4] |
Upton BM, Kasko AM. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev, 2016, 116(4): 2275-306.
doi: 10.1021/acs.chemrev.5b00345 pmid: 26654678 |
[5] |
Lyu LT, Chu YD, Zhang SF, Zhang Y, Huang QT, Wang S, Zhao ZK. Engineering the oleaginous yeast Rhodosporidium toruloides for improved resistance against inhibitors in biomass hydrolysates. Front Bioeng Biotechnol, 2021, 9: 768934.
doi: 10.3389/fbioe.2021.768934 |
[6] |
Couturier M, Navarro D, Chevret D, Henrissat B, Piumi F, Ruiz-Dueñas FJ, Martinez AT, Grigoriev IV, Riley R, Lipzen A, Berrin JG, Master ER, Rosso MN. Enhanced degradation of softwood versus hardwood by the white-rot fungus Pycnoporus coccineus. Biotechnol Biofuels, 2015, 8: 216.
doi: 10.1186/s13068-015-0407-8 pmid: 26692083 |
[7] |
Xia W, Xu XX, Qian LC, Shi PJ, Bai YG, Luo HY, Ma R, Yao B. Engineering a highly active thermophilic β-glucosidase to enhance its pH stability and saccharification performance. Biotechnol Biofuels, 2016, 9: 147.
doi: 10.1186/s13068-016-0560-8 pmid: 27446236 |
[8] |
Calderaro F, Keser M, Akeroyd M, Bevers LE, Eijsink VGH, Várnai A, van den Berg MA. Characterization of an AA9 LPMO from Thielavia australiensis, TausLPMO9B, under industrially relevant lignocellulose saccharification conditions. Biotechnol Biofuels, 2020, 13(1): 195.
doi: 10.1186/s13068-020-01836-3 pmid: 33292403 |
[9] |
Theibich YA, Sauer SPA, Leggio LL, Hedegård ED. Estimating the accuracy of calculated electron paramagnetic resonance hyperfine couplings for a lytic polysaccharide monooxygenase. Comput Struct Biotechnol J, 2021, 19: 555-67.
doi: 10.1016/j.csbj.2020.12.014 |
[10] |
Span EA, Marletta MA. The framework of polysaccharide monooxygenase structure and chemistry. Curr Opin Struct Biol, 2015, 35: 93-99.
doi: 10.1016/j.sbi.2015.10.002 |
[11] |
Hemsworth GR, Henrissat B, Davies GJ, Walton PH. Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol, 2014, 10(2): 122-126.
doi: 10.1038/nchembio.1417 pmid: 24362702 |
[12] |
Wang DM, Li J, Salazar-Alvarez G, McKee LS, Srivastava V, Sellberg JA, Bulone V, Hsieh YSY. Production of functionalised chitins assisted by fungal lytic polysaccharide monooxygenase. Green Chemistry, 2018, 20(9): 2091-2100.
doi: 10.1039/C8GC00422F |
[13] |
Rieder L, Petrović D, Väljamäe P, Eijsink VGH, Sørlie M. Kinetic characterization of a putatively chitin-active LPMO reveals a preference for soluble substrates and absence of monooxygenase activity. ACS Catal, 2021, 11(18): 11685-11695.
doi: 10.1021/acscatal.1c03344 pmid: 34567832 |
[14] |
Støpamo FG, Røhr ÅK, Mekasha S, Petrović DM, Várnai A, Eijsink VGH. Characterization of a lytic polysaccharide monooxygenase from Aspergillus fumigatus shows functional variation among family AA11 fungal LPMOs. J Biol Chem, 2021, 297(6): 101421.
doi: 10.1016/j.jbc.2021.101421 |
[15] | Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels, 2013, 6(1): 41. |
[16] | Dicko M, Ferrari R, Tangthirasunun N, Gautier V, Lalanne C, Lamari F, Silar P. Lignin degradation and its use in signaling development by the coprophilous ascomycete Podospora anserina. J Fungi (Basel), 2020, 6(4): 278. |
[17] |
El-Khoury R, Sellem CH, Coppin E, Boivin A, Maas MFPM, Debuchy R, Sainsard-Chanet A. Gene deletion and allelic replacement in the filamentous fungus Podospora anserina. Curr Genet, 2008, 53(4): 249-258.
doi: 10.1007/s00294-008-0180-3 pmid: 18265986 |
[18] |
Goswami RS. Targeted gene replacement in fungi using a split-marker approach. Methods Mol Biol, 2012, 835: 255-269.
doi: 10.1007/978-1-61779-501-5_16 pmid: 22183659 |
[19] | Yan LY, Zhang HJ, Zheng YQ, Cong YQ, Liu CT, Fan F, Zheng C, Yuan GL, Pan G, Yuan DY, Duan MJ. Transcription factor OsMADS25 improves rice tolerance to cold stress. Hereditas (Beijing), 2021, 43(11): 1078-1087. |
闫凌月, 张豪健, 郑雨晴, 丛韫起, 刘次桃, 樊帆, 郑铖, 袁贵龙, 潘根, 袁定阳, 段美娟. 转录因子OsMADS25提高水稻对低温的耐受性. 遗传, 2021, 43(11): 1078-1087. | |
[20] | Tangthirasunun N, Navarro D, Garajova S, Chevret D, Tong LCH, Gautier V, Hyde KD, Silar P, Berrin JG. Inactivation of cellobiose dehydrogenases modifies the cellulose degradation mechanism of Podospora anserina. Appl Environ Microbiol, 2017, 83(2): e02716-16. |
[21] |
Dashtban M, Maki M, Leung KT, Mao CQ, Qin WS. Cellulase activities in biomass conversion: measurement methods and comparison. Crit Rev Biotechnol, 2010, 30(4): 302-309.
doi: 10.3109/07388551.2010.490938 pmid: 20868219 |
[22] |
Thankappan S, Kandasamy S, Joshi B, Sorokina KN, Taran OP, Uthandi S. Bioprospecting thermophilic glycosyl hydrolases, from hot springs of Himachal Pradesh, for biomass valorization. AMB Express, 2018, 8(1): 168.
doi: 10.1186/s13568-018-0690-4 pmid: 30324223 |
[23] |
Bennati-Granier C, Garajova S, Champion C, Grisel S, Haon M, Zhou SM, Fanuel M, Ropartz D, Rogniaux H, Gimbert I, Record E, Berrin JG.Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina. Biotechnol Biofuels, 2015, 8: 90.
doi: 10.1186/s13068-015-0274-3 pmid: 26136828 |
[24] | Demoor A, Silar P, Brun S. Appressorium: the breakthrough in Dikarya. J Fungi (Basel), 2019, 5(3): 72. |
[25] |
Xie N, Ruprich-Robert G, Silar P, Chapeland-Leclerc F. Bilirubin oxidase-like proteins from Podospora anserina: promising thermostable enzymes for application in transformation of plant biomass. Environ Microbiol, 2015, 17(3): 866-875.
doi: 10.1111/emi.2015.17.issue-3 |
[26] |
Fu C, Thielhelm TP, Heitman J. Unisexual reproduction promotes competition for mating partners in the global human fungal pathogen Cryptococcus deneoformans. PLoS Genet, 2019, 15(9): e1008394.
doi: 10.1371/journal.pgen.1008394 |
[27] |
Wang M, Gu BL, Huang J, Jiang S, Chen YJ, Yin YL, Pan YF, Yu GJ, Li YM, Wong BHC, Liang Y, Sun H. Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita. PLoS One, 2013, 8(2): e56686.
doi: 10.1371/journal.pone.0056686 |
[28] |
Orban A, Weber A, Herzog R, Hennicke F, Rühl M. Transcriptome of different fruiting stages in the cultivated mushroom Cyclocybe aegerita suggests a complex regulation of fruiting and reveals enzymes putatively involved in fungal oxylipin biosynthesis. BMC Genomics, 2021, 22(1): 324.
doi: 10.1186/s12864-021-07648-5 pmid: 33947322 |
[29] |
Schumacher DI, Lütkenhaus R, Altegoer F, Teichert I, Kück U, Nowrousian M.The transcription factor PRO44 and the histone chaperone ASF1 regulate distinct aspects of multicellular development in the filamentous fungus Sordaria macrospora. BMC Genet, 2018, 19(1): 112.
doi: 10.1186/s12863-018-0702-z pmid: 30545291 |
[30] |
Ismail HF, Hashim Z, Soon WT, Rahman NSA, Zainudin AN, Majid FAA. Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo. J Tradit Complement Med, 2017, 7(4): 452-465.
doi: 10.1016/j.jtcme.2016.12.006 pmid: 29034193 |
[31] |
Zhang HR, Li BX, Sun ZM, Zhou H, Zhang SS. Integration of intracellular telomerase monitoring by electrochemiluminescence technology and targeted cancer therapy by reactive oxygen species. Chem Sci, 2017, 8(12): 8025-8029.
doi: 10.1039/c7sc03772d pmid: 29568450 |
[32] |
Kalyani D, Tiwari MK, Li JL, Kim SC, Kalia VC, Kang YC, Lee JK. A highly efficient recombinant laccase from the yeast Yarrowia lipolytica and its application in the hydrolysis of biomass. PLoS One, 2015, 10(3): e0120156.
doi: 10.1371/journal.pone.0120156 |
[33] |
Abraham RE, Wong CS, Puri M. Enrichment of cellulosic waste hemp (Cannabis sativa) hurd into non-toxic microfibres. Materials (Basel), 2016, 9(7): 562.
doi: 10.3390/ma9070562 |
[34] |
Zhang XJ, Qu YB, Qin YQ.Expression and chromatin structures of cellulolytic enzyme gene regulated by heterochromatin protein 1. Biotechnol Biofuels, 2016, 9: 206.
pmid: 27729944 |
[35] |
Laurent CVFP, Sun PC, Scheiblbrandner S, Csarman F, Cannazza P, Frommhagen M, Oostenbrink C, Kabel MA, Ludwig R. Influence of lytic polysaccharide monooxygenase active site segments on activity and affinity. Int J Mol Sci, 2019, 20(24): 6219.
doi: 10.3390/ijms20246219 |
[36] | Silar P. Podospora anserina: from laboratory to biotechnology. Genomics of soil- and plant-associated fungi. 2013, 283-309. |
[37] |
Bernhardt D, Hamann A, Osiewacz HD. The role of mitochondria in fungal aging. Curr Opin Microbiol, 2014, 22: 1-7.
doi: 10.1016/j.mib.2014.09.007 pmid: 25299751 |
[38] |
Pellavio G, Sommi P, Anselmi-Tamburini U, DeMichelis MP, Coniglio S, Laforenza U. Cerium oxide nanoparticles regulate oxidative stress in hela cells by increasing the aquaporin-mediated hydrogen peroxide permeability. Int J Mol Sci, 2022, 23(18): 10837.
doi: 10.3390/ijms231810837 |
[39] | Gao H, Liu XP, Tian KM, Meng YC, Yu CC, Peng YF. Insight into the protective effect of salidroside against H2O2-induced injury in H9C2 cells. Oxid Med Cell Longev, 2021, 2021: 1060271. |
[40] |
Wiemer M, Osiewacz HD. Effect of paraquat-induced oxidative stress on gene expression and aging of the filamentous ascomycete Podospora anserina. Microb Cell, 2014, 1(7): 225-240.
doi: 10.15698/mic2014.07.155 pmid: 28357247 |
[41] | Wu LW, Ren DY, Hu SK, Li GM, Dong GJ, Jiang L, Hu XM, Ye WJ, Cui YT, Zhu L, Hu J, Zhang GH, Gao ZY, Zeng DL, Qian Q, Guo LB. Down-regulation of a nicotinate phosphoribosyltransferase gene, OsNaPRT1, leads to withered leaf tips. Plant Physiol, 2016, 171(2): 1085-1098. |
[42] |
Bian HY, Wu XX, Luo J, Qiao YZ, Fang GG, Dai HQ. Valorization of alkaline peroxide mechanical pulp by metal chloride-assisted hydrotropic pretreatment for enzymatic saccharification and cellulose nanofibrillation. Polymers (Basel), 2019, 11(2): 331.
doi: 10.3390/polym11020331 |
[43] |
Couturier M, Tangthirasunun N, Ning X, Brun S, Gautier V, Bennati-Granier C, Silar P, Berrin JG. Plant biomass degrading ability of the coprophilic ascomycete fungus Podospora anserina. Biotechnol Adv, 2016, 34(5): 976-983.
doi: S0734-9750(16)30067-2 pmid: 27263000 |
[44] |
Brun S, Malagnac F, Bidard F, Lalucque H, Silar P. Functions and regulation of the Nox family in the filamentous fungus Podospora anserina: a new role in cellulose degradation. Mol Microbiol, 2009, 74(2): 480-496.
doi: 10.1111/mmi.2009.74.issue-2 |
[45] |
Xie N, Chapeland-Leclerc F, Silar P, Ruprich-Robert G. Systematic gene deletions evidences that laccases are involved in several stages of wood degradation in the filamentous fungus Podospora anserina. Environ Microbiol, 2014, 16(1): 141-161.
doi: 10.1111/1462-2920.12253 pmid: 24102726 |
[1] | 刘梅珍, 王立人, 李咏梅, 马雪云, 韩红辉, 李大力. 利用CRISPR/Cas9技术构建基因编辑大鼠模型[J]. 遗传, 2023, 45(1): 78-87. |
[2] | 林珉婷, 赖璐璐, 赵淼, 林必玮, 姚香平. 利用CRISPR/Cas9 AAV系统构建纹状体Slc20a2基因敲除小鼠模型[J]. 遗传, 2020, 42(10): 1017-1027. |
[3] | 张桂珊, 杨勇, 张灵敏, 戴宪华. 机器学习方法在CRISPR/Cas9系统中的应用[J]. 遗传, 2018, 40(9): 704-723. |
[4] | 唐浚博, 曹浩伟, 许蕊, 张丹丹, 黄娟. 果蝇睾丸基因敲除突变体的构建及表型分析[J]. 遗传, 2018, 40(6): 478-487. |
[5] | 潘园园, 刘钢. 中国丝状真菌次级代谢分子调控研究进展[J]. 遗传, 2018, 40(10): 874-887. |
[6] | 李红花,刘钢. CRISPR/Cas9在丝状真菌基因组编辑中的应用[J]. 遗传, 2017, 39(5): 355-367. |
[7] | 张峰华,王厚鹏,黄思雨,熊凤,朱作言,孙永华. 两种密码子优化的Cas9编码基因在斑马鱼胚胎中基因敲除效率的比较[J]. 遗传, 2016, 38(2): 144-154. |
[8] | 王小利,姜闯,刘建华,刘喜朋. 一种基于线性DNA片段同源重组的嗜盐古菌高效基因敲除系统[J]. 遗传, 2015, 37(4): 388-395. |
[9] | 刘改改,李爽,韦余达,张永贤,丁秋蓉. 利用CRISPR/Cas9技术对人多能干细胞进行高效基因组编辑[J]. 遗传, 2015, 37(11): 1167-1173. |
[10] | 王慧, 李光, 王义权. 文昌鱼Hedgehog基因敲除和突变体表型分析[J]. 遗传, 2015, 37(10): 1036-1043. |
[11] | 白敏, 李崎, 邵艳姣, 黄元华, 李大力, 马燕琳. 利用CRISPR/Cas9技术构建定点突变小鼠品系[J]. 遗传, 2015, 37(10): 1029-1035. |
[12] | 李飞达, 李勇, 刘欢, 张欢欢, 刘楚新, 张兴举, 窦红伟, 杨文献, 杜玉涛. 利用TALENs和手工克隆技术高效获得GHR基因敲除巴马猪[J]. 遗传, 2014, 36(9): 903-911. |
[13] | 项峥,陈献忠,张利华,沈微,樊游,陆茂林. 利用可重复使用的URA3标记基因建立热带假丝酵母基因敲除系统[J]. 遗传, 2014, 36(10): 1053-1061. |
[14] | 于珍, 栾春杰, 顾鸣敏. 腓骨肌萎缩症2型(CMT2)小鼠模型的研究进展[J]. 遗传, 2014, 36(1): 21-29. |
[15] | 曹随忠 岳成鹤 李西睿 冯冲 龙川 潘登科. 锌指核酸酶技术制备肌肉生长抑制素基因敲除的五指山小型猪成纤维细胞[J]. 遗传, 2013, 35(6): 778-785. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: