[1] | Bok JW, Keller NP . LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell, 2004,3(2):527-535. | [2] | Wang YP, Tan YM, Zhou GQ, Lan Y, Liu YX, Luo Z, Liu ZY . Recent advances of global regulator LaeA of filamentous fungi. Genomics and Applied Biology, 2017,36(2):712-718. | [2] | 王亚萍, 谭玉梅, 周国庆, 兰亚, 刘永翔, 罗钊, 刘作易 . 丝状真菌全局性调控因子LaeA的研究进展. 基因组学与应用生物学, 2017,36(2):712-718. | [3] | Bok JW, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Keller NP . LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot Cell, 2005,4(9):1574-1582. | [4] | Jiang T, Wang M, Li L, Si J, Song B, Zhou C, Yu M, Wang X, Zhang Y, Ding G, Zou Z . Overexpression of the global regulator LaeA in Chaetomium globosum leads to the biosynthesis of Chaetoglobosin Z. J Nat Prod, 2016,79(10):2487-2494. | [5] | Zheng Y, Cao S, Huang Y, Liao G, Hu C . Overexpression of LaeA enhances mevastatin production and reduces sporulation of Penicillium citrinum. Acta Microbiol Sin, 2014,54(12):1438-1445. | [6] | Zhou F . The research of the proteins interacting with the global regulator, LaeA in the Pennicillium citrinum. [Dissertation]. Southwest University, 2014. | [6] | 周峰 . 橘青霉全局性调控因子LaeA相互作用蛋白研究 [学位论文]. 西南大学, 2014. | [7] | Zhang X, Zhu Y, Bao L, Gao L, Yao G, Li Y, Yang Z, Li Z, Zhong Y, Li F, Yin H, Qu Y, Qin Y . Putative methyltransferase LaeA and transcription factor CreA are necessary for proper asexual development and controlling secondary metabolic gene cluster expression. Fungal Genet Biol, 2016,94:32-46. | [8] | Liu Q, Cai L, Shao Y, Zhou Y, Li M, Wang X, Chen F . Inactivation of the global regulator LaeA in Monascus ruber results in a species-dependent response in sporulation and secondary metabolism. Fungal Biol, 2016,120(3):297-305. | [9] | Lv YY . Study on regulation of secondary metabolism in Aspergillus niger FGSC A1279 [Dissertation]. South China University of Technology, 2014. | [9] | 吕扬勇 . 黑曲霉FGSC A1279次级代谢调控研究[学位论文]. 华南理工大学, 2014. | [10] | Wang B, Lv YY, Li XJ, Lin YY, Deng H, Pan L . Profiling of secondary metabolite gene clusters regulated by LaeA in Aspergillus niger FGSC A1279 based on genome sequencing and transcriptome analysis. Res Microbiol, 2018,169(2):67-77. | [11] | Akhberdi O, Zhang Q, Wang D, Wang H, Hao X, Liu Y, Wei D, Zhu X . Distinct roles of velvet complex in the development, stress tolerance, and secondary metabolism in Pestalotiopsis microspora, a taxol producer. Genes, 2018,9(3):164. doi: 10.3390/genes9030164. | [12] | Fox EM, Howlett BJ . Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol, 2008,11(6):481-487. | [13] | Ahmed YL, Gerke J, Park HS, Bayram O, Neumann P, Ni M, Dickmanns A, Kim SC, Yu JH, Braus GH, Ficner R . The velvet family of fungal regulators contains a DNA- binding domain structurally similar to NF-κB. PLoS Biol, 2013,11(12):e1001750. | [14] | Calvo AM . The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet Biol, 2008,45(7):1053-1061. | [15] | Kim H, Han K, Kim K, Han D, Jahng K, Chae K . The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol, 2002,37(1):72-80. | [16] | Kato N, Brooks W, Calvo AM . The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot Cell, 2003,2(6):1178-1186. | [17] | Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH . VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science, 2008,320(5882):1504-1506. | [18] | Feng HY . Molecular cloning and character description of the global regulate gene Pci-veA in Pennicillium citrinum. [Dissertation]. Southwest University, 2011. | [18] | 冯慧云 . 橘青霉中全局性调控基因Pci-veA的克隆鉴定及其特性的初步研究[学位论文]. 西南大学, 2011. | [19] | Zheng YL . The global regulation and mechanism ofveA in Pennicillium citrinum [Dissertation]. Southwest University, 2015. | [19] | 郑跃亮 . 橘青霉veA的全局性调控作用及其分子机制 [学位论文]. 西南大学, 2015. | [20] | Jiang JH, Liu X, Yin YN, Ma ZH . Involvement of a velvet protein FgVeA in the regulation of asexual development, lipid and secondary metabolisms and virulence in Fusarium graminearum. PLoS One, 2011,6(11):e28291. | [21] | Jiang J, Yun Y, Liu Y, Ma Z . FgVELB is associated with vegetative differentiation, secondary metabolism and virulence in Fusarium graminearum. Fungal Genet Biol, 2012,49(8):653-662. | [22] | Lan N, Zhang H, Hu C, Wang W, Calvo AM, Harris SD, Chen S, Li S . Coordinated and distinct functions of velvet proteins in Fusarium verticillioides. Eukaryot Cell, 2014,13(7):909-918. | [23] | Wang R, Leng YQ, Zhong SB . The regulatory gene VosA affects conidiogenesis and is involved in virulence of the fungal cereal pathogen Cochliobolus sativus. Fungal Biol, 2015,119(10):884-900. | [24] | Akhberdi O, Zhang Q, Wang HC, Li YY, Chen LF, Wang D, Yu X, Wei DS, Zhu XD . Roles of phospholipid methyltransferases in pycnidia development, stress tolerance and secondary metabolism in the taxol-producing fungus Pestalotiopsis microspore. Microbiol Res, 2018,210:33-42. | [25] | Wu Y, Ren YN, Zhou XS, Cai MH, Zhang YX . Transcription factor Agseb1 affects development, osmotic stress response, and secondary metabolism in marine- derived Aspergillus glaucus. J Basic Microbiol, 2017,57(10):873-882. | [26] | Fan Y, Liu X, Keyhani NO, Tang G, Pei Y, Zhang W, Tong S . Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death. Proc Natl Acad Sci USA, 2017,114(9):E1578-E1586. | [27] | Yang F, Abdelnabby H, Xiao YN. The Zn ( II)2Cys6 putative transcription factor is involved in the regulation of leucinostatin production and pathogenicity of the nematophagous fungus Paecilomyces lilacinus. Can J Plant Pathol, 2015,37(3):342-352. | [28] | Long LK, Wang Y, Yang J, Xu X, Liu G . A septation related gene AcsepH in Acremonium chrysogenum is involved in the cellular differentiation and cephalosporin production. Fungal Genet Biol, 2013,50:11-20. | [29] | Hu PJ, Wang Y, Zhou J, Pan YY, Liu G . AcstuA, which encodes an APSES transcription regulator, is involved in conidiation, cephalosporin biosynthesis and cell wall integrity of Acremonium chrysogenum. Fungal Genet Biol, 2015,83:26-40. | [30] | Wang Y, Hu P, Li H, Wang Y, Long LK, Li K, Zhang X, Pan Y, Liu G . A Myb transcription factor represses conidiation and cephalosporin C production in Acremonium chrysogenum. Fungal Genet Biol, 2018,118:1-9. | [31] | Brakhage AA . Regulation of fungal secondary metabolism. Nat Rev Microbiol, 2013,11(1):21-32. | [32] | Bergmann S, Funk AN, Scherlach K, Schroeckh V, Shelest E, Horn U, Hertweck C, Brakhage AA . Activation of a silent fungal polyketide biosynthesis pathway through regulatory cross talk with a cryptic nonribosomal peptide synthetase gene cluster. Appl Environ Microbiol, 2010,76(24):8143-8149. | [33] | Wang G, Liu ZG, Lin RM, Li EF, Mao ZC, Ling J, Yang YH, Yin WB, Xie BY . Biosynthesis of antibiotic leucinostatins in bio-control fungus Purpureocillium lilacinum and their inhibition on phytophthora revealed by genome mining. PLoS Pathog, 2016,12(7):e1005685. | [34] | Wang Y, Hu P, Pan Y, Zhu Y, Liu X, Che Y, Liu G . Identification and characterization of the verticillin biosynthetic gene cluster in Clonostachys rogersoniana. Fungal Genet Biol, 2017,103:25-33. | [35] | Guo Z, Hao T, Wang Y, Pan Y, Ren F, Liu X, Che Y, Liu G . VerZ, a Zn(II)2Cys6 DNA-binding protein, regulates the biosynthesis of verticillin in Clonostachys rogersoniana. Microbiology, 2017,163:1654-1663. | [36] | Jiang C, Zhang C, Wu C, Sun P, Hou R, Liu H, Wang C, Xu JR . TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMPsignalling in Fusarium graminearum. Environ Microbiol, 2016,18(11):3689-3701. | [37] | Brakhage AA , SchroeckhV. Fungal secondary metabolites- strategies to activate silent gene clusters. Fungal Genet Biol, 2011,48(1):15-22. | [38] | Mao XM, Xu W, Li D, Yin WB, Chooi YH, Li YQ, Tang Y, Hu Y . Epigenetic genome mining of an endophytic fungus leads to the pleiotropic biosynthesis of natural products. Angew Chem Int Ed Engl, 2015,54(26):7592-7596. | [39] | Zhang Q, Chen L, Yu X, Liu H, Akhberdi O, Pan J, Zhu X . A B-type histone acetyltransferase Hat1 regulates secondary metabolism, conidiation, and cell wall integrity in the taxol-producing fungus Pestalotiopsis microspora. J Basic Microbiol, 2016,56(12):1380-1391. | [40] | Kong XJ, van Diepeningen AD, van der Lee TAJ, Waalwijk C, Xu JS, Xu J, Zhang H, Chen WQ, Feng J . The Fusarium graminearum histone acetyltransferases are important for morphogenesis, DON biosynthesis, and pathogenicity. Front Microbiol, 2018,9:654. | [41] | Lan HH, Sun RL, Fan K, Yang KL, Zhang F, Nie XY, Wang XN, Zhuang ZH, Wang SH . The Aspergillus flavus histone acetyl transferase AflGcnE regulates morphogenesis, aflatoxin biosynthesis, and pathogenicity. Front Microbiol, 2016,7:e74030. | [42] | Wu G, Zhou H, Zhang P, Wang X, Li W, Zhang W, Liu X, Liu HW, Keller NP, An Z, Yin WB . Polyketide production of pestaloficiols and macrodiolideficiolides revealed by manipulations of epigenetic regulators in an endophytic fungus. Org Lett, 2016,18(8):1832-1835. | [43] | Fan A, Mi W, Liu Z, Zeng G, Zhang P, Hu Y, Fang W, Yin WB . Deletion of a histone acetyltransferase leads to the pleiotropic activation of natural products in Metarhizium robertsii. Org Lett, 2017,19(7):1686-1689. | [44] | Xie LX . The role of epigenetics in Mycobacterium tuberculosis antibiotic resistance [Dissertation]. Southwest University, 2017. | [44] | 谢龙祥 . 结核分枝杆菌表观遗传与耐药新机理研究 [学位论文]. 西南大学, 2017. | [45] | Lin JQ, Zhao XX, Zhi QQ, Zhao M, He ZM . Transcriptomic profiling of Aspergillus flavus in response to 5-azacytidine. Fungal Genet Biol, 2013,56:78-86. | [46] | Yang DF, Liu FL, Yang XL . DNA methyltransferase inhibitor dramatically alters the secondary metabolism of Pestalotiopsis microspora. J Chin Pharmac Sci, 2017,26(5):355-359. | [47] | Liu DZ, Liang BW, Li XF, Liu Q . Induced production of new diterpenoids in the fungus Penicillium funiculosum. Nat Prod Commun, 2014,9(5):607-608. | [48] | Yang XL, Huang L, Ruan XL . Epigenetic modifiers alter the secondary metabolite composition of a plant endophytic fungus, Pestalotiopsis crassiuscula obtained from the leaves of Fragaria chiloensis. J Asian Nat Prod Res, 2014,16(4):412-417. | [49] | Li X, Xia Z, Tang J, Wu J, Tong J, Li M, Ju J, Chen H, Wang L . Identification and biological evaluation of secondary metabolites from marine derived fungi- Aspergillus sp. scsiow3, cultivated in the presence of epigenetic modifying agents. Molecules, 2017,22(8):1302. | [50] | Wang L, Li M, Tang J, Li X . Eremophilane sesquiterpenes from a deep marine-derived fungus, Aspergillus sp. SCSIOW2, cultivated in the presence of epigenetic modifying agents. Molecules, 2016,21(4):473. | [51] | Chen M, Zhang W, Shao CL, Chi ZM, Wang CY . DNA methyltransferase inhibitor induced fungal biosynthetic products: Diethylene glycol phthalate ester oligomers from the marine-derived fungus Cochliobolus lunatus. Mar Biotechnol (NY), 2016,18(3):409-417. | [52] | Zhang W, Shao CL, Chen M, Liu QA, Wang CY . Brominated resorcylic acid lactones from the marine- derived fungus Cochliobolus lunatus induced by histone deacetylase inhibitors. Tetrahedron Lett, 2014,55(35):4888-4891. | [53] | Li DB, Zhang XQ, Zhang XL, Hou XM, Guan FF, Wang CY, Shao CL . Fermentation optimization for the gorgonian coral-derived fungus Curvularia lunatato produce cytochalasin B and the study of adding chemical epigenetic modification in fermentation. Chin J Mar Drugs, 2016,35(5):14-20. | [54] | Zhu JX, Ding L, He S . Discovery of a new biphenyl derivative by epigenetic manipulation of marine-derived fungus Aspergillus versicolor. Nat Prod Res, 2018,23:1-5. | [55] | Long LK, Yang J, An Y, Liu G . Disruption of a glutathione reductase encoding gene in Acremonium chrysogenum leads to reduction of its growth, cephalosporin production and antioxidative ability which is recovered by exogenous methionine. Fungal Genet Biol, 2012,49(2):114-122. | [56] | Liu L, Long LK, An Y, Yang J, Xu X, Hu CH, Liu G . The thioredoxinreductase-encoding gene ActrxR1 is involved in the cephalosporin C production of Acremonium chrysogenum in methionine-supplemented medium. Appl Microbiol Biotechnol, 2013,97(6):2551-2562. | [57] | Wang X, Wu F, Liu L, Liu X, Che Y, Keller NP, Guo L, Yin WB . The bZIP transcription factor PfZipA regulates secondary metabolism and oxidative stress response in the plant endophytic fungus Pestalotiopsis fici. Fungal Genet Biol, 2015,81:221-228. | [58] | Li J, Pan Y, Liu G . Disruption of the nitrogen regulatory gene AcareA in Acremonium chrysogenum leads to reduction of cephalosporin production and repression of nitrogen metabolism. Fungal Genet Biol, 2013,61:69-79. | [59] | Guan F, Pan Y, Li J, Liu G . A GATA-type transcription factor AcAREB for nitrogen metabolism is involved in regulation of cephalosporin biosynthesis in Acremonium chrysogenum. Sci China Life Sci, 2017,60(9):958-967. | [60] | Wu FL, Zhang G, Ren A, Dang ZH, Shi L, Jiang AL, Zhao MW . The pH-responsive transcription factor PacC regulates mycelial growth, fruiting body development, and ganoderic acid biosynthesis in Ganoderma lucidum. Mycologia, 2016,108(6):1104-1113. | [61] | Fasoyin OE, Wang B, Qiu M, Han X, Chung KR, Wang S . Carbon catabolite repression gene creA regulates morphology, aflatoxin biosynthesis and virulence in Aspergillus flavus. Fungal Genet Biol, 2018,115:41-51. | [62] | Li TT, Jiang GX, Qu HX, Wang Y, Xiong YH, Jian QJ, Wu Y, Duan XW, Zhu XR, Hu WZ, Wang JS, Gong L, Jiang YM . Comparative transcriptome analysis of Penicillium citrinum cultured with different carbon sources identifies genes involved in citrinin biosynthesis. Toxins(Basel), 2017,9(2):69. | [63] | Lin L, Wang CL, Li ZJ, Wu HJ, Chen MH . Effect of temperature-shift and temperature-constant cultivation on the Monacolin K biosynthetic gene cluster expression in Monascus sp. Food Technol Biotechnol, 2017,55(1):40-47. | [64] | Li C, Wang J, Luo C, Ding W, Cox DG . A new cyclopeptide with antifungal activity from the co-culture broth of two marine mangrove fungi. Nat Prod Res, 2014,28(9):616-621. | [65] | Li CY, Ding WJ, Shao CL, She ZG, Lin YC . A new diimide derivative from the co-culture broth of two mangrove fungi (strain no. E33 and K38). J Asian Nat Prod Res, 2010,12(9):809-813. | [66] | Huang S, Ding W, Li C, Cox DG . Two new cyclopeptides from the co-culture broth of two marine mangrove fungi and their antifungal activity. Pharmacogn Mag, 2014,10(40):410-414. | [67] | Oh DC, Kauffman CA, Jensen PR, Fenical W . Induced production of emericellamides A and B from the marine- derived fungus Emericella sp. in competing co-culture. J Nat Prod, 2007,70(4):515-520. | [68] | Han S . Comparison of primary metabolism in high- and low-yield Acremonium chrysogenum and study on CPC methylation [Dissertation]. China State Institute of Pharmaceutical Industry, 2016. | [68] | 韩姝 . 顶头孢霉高低产菌初级代谢的比较及CPC甲氧基化的探索 [学位论文]. 中国医药工业研究总院, 2016. | [69] | Calvo AM, Wilson RA, Bok JW, Keller NP . Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev, 2002,66(3):447-459. | [70] | Brown SH, Scott JB, Bhaheetharan J, Sharpee WC, Milde L, Wilson RA, Keller NP . Oxygenase coordination is required for morphological transition and the host-fungus interaction of Aspergillus flavus. Mol Plant Microbe Interact, 2009,22(7):882-894. | [71] | Wang L, Tian X, Wang J, Yang H, Fan K, Xu G, Yang K, Tan H . Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proc Natl Acad Sci USA, 2009,106(21):8617-8622. | [72] | Fountain JC, Bajaj P, Nayak SN, Yang L, Pandey MK, Kumar V, Jayale AS, Chitikineni A, Lee RD, Kemerait RC, Varshney RK, Guo B . Responses of Aspergillus flavus to oxidative stress are related to fungal development regulator, antioxidant enzyme, and secondary metabolite biosynthetic gene expression. Front Microbiol, 2016,7:2048. | [73] | Wang H, Pan Y, Hu P, Zhu Y, Li J, Jiang X, Liu G . The autophagy-related gene Acatg1 is involved in conidiationand cephalosporin production in Acremonium chrysogenum. Fungal Genet Biol, 2014,69:65-74. | [74] | Liu J, Hao T, Hu P, Pan Y, Jiang X, Liu G . Functional analysis of the selective autophagy related gene Acatg11 inAcremonium chrysogenum. Fungal Genet Biol, 2017,107:67-76. | [75] | Zheng Y, Ma K, Lyu H, Huang Y, Liu H, Liu L, Che Y, Liu X, Zou H, Yin WB . Genetic manipulation of the COP9 signalosome subunit PfCsnE leads to the discovery of pestaloficins in Pestalotiopsis fici. Org Lett, 2017,19(17):4700-4703. | [76] | Zheng Y, Wang X, Zhang X, Li W, Liu G, Wang S, Yan X, Zou H, Yin WB . COP9 signalosome subunit PfCsnE regulates secondary metabolism and conidial formation in Pestalotiopsis fici. Sci China Life Sci, 2017,60(6):656-664. | [77] | Wang MS, Yang X, Ruan RX, Fu HL, Li HY . Csn5 is required for the conidiogenesis and pathogenesis of the Alternaria alternata tangerine pathotype. Front Microbiol, 2018,9:508. | [78] | Tang GF, Chen Y, Xu JR, Kistler HC, Ma ZH . The fungal myosin I is essential for Fusarium toxisome formation. PLoS Pathog, 2018,14(1):e1006827. | [79] | Liu Z, Wu S, Chen Y, Han X, Gu Q, Yin Y, Ma ZH . The microtubule end-binding protein FgEB1 regulates polar growth and fungicide sensitivity via different interactors in Fusarium graminearum. Environ Microbiol, 2017,19(5):1791-1807. | [80] | Liu ZY, Zhang XP, Liu X, Fu CY, Han XY, Yin YN, Ma ZH . The chitin synthase FgChs2 and other FgChss co-regulate vegetative development and virulence in F. graminearum. Sci Rep, 2016,6:34975. | [81] | Wang D, Li YY, Wang HC, Wei DS, Akhberdi O, Liu YJ, Xiang BY, Hao XR, Zhu XD . The AMP-activated protein kinase homolog Snf1 concerts carbon utilization, conidia production and the biosynthesis of secondary metabolites in the taxol-producer Pestalotiopsis microspora. Genes, 2018,9(2):59. | [82] | Li L, Shao Y, Li Q, Yang S, Chen F . Identification of Mga1, a G-protein alpha-subunit gene involved in regulating citrinin and pigment production in Monascus ruber M7. FEMS Microbiol Lett, 2010,308(2):108-114. | [83] | Yang Y, Li L, Li X, Shao Y, Chen F . mrflbA, encoding a putative FlbA, is involved in aerial hyphal development and secondary metabolite production in Monascus ruber M-7. Fungal Biol, 2012,116(2):225-233. | [84] | Yan QQ, Zhang ZW, Yang YS, Chen FS, Shao YC . Proteome analysis reveals global response to deletion of mrflbA in Monascus ruber. J Microbiol, 2018,56(4):255-263. | [85] | Yu JH . Regulation of development in Aspergillus nidulans and Aspergillus fumigatus. Mycobiology, 2010,38(4):229-237. | [86] | Bayram O, Bayram OS, Ahmed YL, Maruyama J, Valerius O, Rizzoli SO, Ficner R, Irniger S, Braus GH . The Aspergillus nidulans MAPK module AnSte11-Ste50-Ste7- Fus3 controls development and secondary metabolism. PLoS Genet, 2012,8(7):e1002816. | [87] | Park G, Pan S, Borkovich KA . Mitogen-activated protein kinase cascade required for regulation of development and secondary metabolism in Neurospora crassa. Eukaryot Cell, 2008,7(12):2113-2122. | [88] | Yang P . The gene task1 is involved in morphological development, mycoparasitism and antibiosis of Trichoderma asperellum. Biocontrol Sci Technol, 2017,27(5):620-635. | [89] | Gong XD, Feng SZ, Zhao J, Tang C, Tian L, Fan YS, Cao ZY, Hao ZM, Jia H, Zang JP, Zhang YF, Han JM, Gu SQ, Dong JG . StPBS2, a MAPK kinase gene, is involved in determining hyphal morphology, cell wall development, hypertonic stress reaction as well as the production of secondary metabolites in Northern Corn Leaf Blight pathogen Setosphaeria turcica. Microbiol Res, 2017,201:30-38. |
|