[1] | Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini L, Zhang F . Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823. | [2] | Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA . RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol, 2013,31(3):233-239. | [3] | Hsu PD, Lander ES, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157(6):1262-1278. | [4] | Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD . High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013,31(9):822-826. | [5] | Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR . High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol, 2013,31(9):839-843. | [6] | Wong N, Liu W, Wang X . WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol, 2015,16:218. | [7] | Hinz JM, Laughery MF, Wyrick JJ . Nucleosomes inhibit Cas9 endonuclease activity in vitro. Biochemistry, 2015,54(48):7063-7066. | [8] | Horlbeck MA, Gilbert LA, Villalta JE, Adamson B, Pak RA, Chen Y, Fields AP, Park CY, Corn JE, Kampmann M, Weissman JS . Compact and highly active next- generation libraries for CRISPR-mediated gene repression and activation. Elife, 2016,5:e19760. | [9] | Lee CM, Davis TH, Bao G . Examination of CRISPR/ Cas9 design tools and the effect of target site accessibility on Cas9 activity. Exp Physiol, 2017,103(4):456-460. | [10] | Isaac RS, Jiang FG, Doudna JA, Lim WA, Narlikar GJ, Almeida R . Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. Elife, 2016,5:e13450. | [11] | Kosicki M, Tomberg K, Bradley A . Repair of double- strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol, 2018,36(8):765-771. | [12] | Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989. | [13] | Listgarten J, Weinstein M, Kleinstiver BP, Sousa AA, Joung JK, Crawford J, Gao K, Hoang L, Elibol M, Doench JG, Fusi N . Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nat Biomed Eng, 2018,2(1):38-47. | [14] | Kim HK, Min S, Song M, Jung S, Choi JW, Kim Y, Lee S, Yoon S, Kim HH . Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nat Biotechnol, 2018,36(3):239-241. | [15] | Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, Wile BM, Vertino PM, Stewart FJ, Bao G . CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res, 2014,42(11):7473-7485. | [16] | Najm FJ, Strand C, Donovan KF, Hegde M, Sanson KR, Vaimberg EW, Sullender ME, Hartenian E, Kalani Z, Fusi N, Listgarten J, Younger ST, Bernstein BE, Root DE, Doench JG . Orthologous CRISPR-Cas9 enzymes for combinatorial genetic screens. Nat Biotechnol, 2017,36(2):179-189. | [17] | Kuscu C, Arslan S, Singh R, Thorpe J, Adli M . Genome-wide analysis reveals characteristics of off- target sites bound by the Cas9 endonuclease. Nat Biotechnol, 2014,32(7):677-683. | [18] | Hart T, Tong A, Chan K, van Leeuwen J, Seetharaman A, Aregger M, Chandrashekhar M, Hustedt N, Seth S, Noonan A , Habsid A, Sizova O, Nedyalkova L, Climie R, Lawson K, Sartori MA, Alibai S, Tieu D, Masud S, Mero P, Weiss A, Brown KR, U?aj M, Billmann M, Rahman M, Costanzo M, Myers CL, Andrews B, Boone C, Durocher D, Moffat J . Evaluation and design of genome-wide CRISPR/Cas9 knockout screens. bioRxiv. 2017,7(8):2719-2727. | [19] | Alkhnbashi OS, Costa F, Shah SA, Garrett RA, Saunders SJ, Backofen R . CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci. Bioinformatics, 2014,30(17):i489-i496. | [20] | Hart T, Moffat J . BAGEL: a computational framework for identifying essential genes from pooled library screens. BMC Bioinformatics, 2016,17:164. | [21] | Kim HK, Song M, Lee J, Menon AV, Jung S, Kang YM, Choi JW, Woo E, Koh HC, Nam JW, Kim H . In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods, 2017,14(2):153-159. | [22] | Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE . Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, 2016,34(2):184-191. | [23] | Kuan PF, Powers S, He S, Li K, Zhao X, Huang B . A systematic evaluation of nucleotide properties for CRISPR sgRNA design. BMC Bioinformatics, 2017,18(1):297. | [24] | Chen L, Wang SP, Zhang YH, Li JR, Xing ZH, Yang J, Huang T, Cai YD . Identify key sequence features to improve CRISPR sgRNA efficacy. IEEE Access, 2017,5:26582-26590. | [25] | Shah SA, Vestergaard G, Garrett RA . CRISPR/Cas and CRISPR/Cmr Immune Systems of Archaea. Springer Vienna, 2012: 163-181. | [26] | Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A . Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 1987,169(12):5429-5433. | [27] | Jansen R, Embden JD, Gaastra W, Schouls LM . Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002,43(6):1565-1575. | [28] | Garneau JE, Dupuis M-è, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S . The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010,468(7320):67-71. | [29] | Horvath P, Barrangou R . CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010,327(5962):167-170. | [30] | Mojica FJM, DíezVillase?or C, García-Martínez J, Almendros C . Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 2009,155(pt 3):733-740. | [31] | Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E . CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ. Nature, 2011,471(7340):602-607. | [32] | Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O . Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014,156(5):935-949. | [33] | Lu XJ, Xue HY, Ke ZP, Chen JL, Ji LJ . CRISPR-Cas9: a new and promising player in gene therapy. J Med Genet, 2015,52(5):289-296. | [34] | Rouet P, Smih F, Jasin M . Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol, 1994,14(12):8096-8106. | [35] | Rouet P, Smih F, Jasin M . Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci USA, 1994,91(13):6064-6068. | [36] | Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E . A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821. | [37] | Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA . DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 2014,507(7490):62-67. | [38] | Zhang Y, Ge X, Yang F, Zhang L, Zheng J, Tan X, Jin ZB, Qu J, Gu F . Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep, 2014,4:5405. | [39] | Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F . DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol, 2013,31(9):827-832. | [40] | Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, Aryee MJ, Joung JK . Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015,523(7561):481-485. | [41] | Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM . CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol, 2013,31(9):833-838. | [42] | O'Geen H, Henry IM, Bhakta MS, Meckler JF, Segal DJ . A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Res, 2015,43(6):3389-3404. | [43] | Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S, Jaenisch R, Zhang F, Sharp PA . Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol, 2014,32(7):670-676. | [44] | Bae S, Kweon J, Kim HS, Kim JS . Microhomology- based choice of Cas9 nuclease target sites. Nat Methods, 2014,11(7):705-706. | [45] | Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE . Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol, 2014,32(12):1262-1267. | [46] | Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ . CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods, 2015,12(10):982-988. | [47] | Wang T, Wei JJ, Sabatini DM, Lander ES . Genetic screens in human cells using the CRISPR-Cas9 system. Science, 2014,343(6166):80-84. | [48] | Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS . Analysis of off-target effects of CRISPR/Cas- derived RNA-guided endonucleases and nickases. Genome Res, 2014,24(1):132-141. | [49] | Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK . Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol, 2014,32(3):279-284. | [50] | Koch B, Nijmeijer B, Kueblbeck M, Cai Y, Walther N, Ellenberg J . Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing. Nat Protoc, 2018,13(6):1465-1487. | [51] | Ran FA, Hsu Patrick D, Lin CY, Gootenberg Jonathan S, Konermann S, Trevino AE, Scott David A, Inoue A, Matoba S, Zhang Y . Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013,154(6):1380-1389. | [52] | Abadi S, Yan WX, Amar D, Mayrose I . A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Comput Biol, 2017,13(10):e1005807. | [53] | Xie S, Shen B, Zhang C, Huang X, Zhang Y . sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PloS One, 2014,9(6):e100448. | [54] | MacPherson CR, Scherf A . Flexible guide-RNA design for CRISPR applications using Protospacer Workbench. Nat Biotechnol, 2015,33(8):805-806. | [55] | Ma M, Ye AY, Zheng W, Kong L . A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. Biomed Res Int, 2013,2013:270805. | [56] | Guilinger JP, Thompson DB, Liu DR . Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol, 2014,32(6):577-582. | [57] | Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F . Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 2013,8(11):2281-2308. | [58] | Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK . High-fidelity CRISPR- Cas9 nucleases with no detectable genome-wide off- target effects. Nature, 2016,529(7587):490-495. | [59] | Frock RL, Hu J, Meyers RM, Ho Y-J, Kii E, Alt FW . Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol, 2015,33(2):179-186. | [60] | Rahman MK, Rahman MS . CRISPRpred: A flexible and efficient tool for sgRNAs on-target activity prediction in CRISPR/Cas9 systems. PLoS One, 2017,12(8):e0181943. | [61] | Erard N, Knott SRV, Hannon GJ . A CRISPR Resource for Individual, Combinatorial, or Multiplexed Gene Knockout. Mol Cell, 2017,67(6):1080. | [62] | Chari R, Yeo NC, Chavez A, Church GM . sgRNA Scorer 2.0: A species-independent model to predict CRISPR/Cas9 activity. ACS Synth Biol, 2017,6(5):902-904. | [63] | Ma J, Koster J, Qin Q, Hu S, Li W, Chen C, Cao Q, Wang J, Mei S, Liu Q, Xu H, Liu XS . CRISPR-DO for genome-wide CRISPR design and optimization. Bioinformatics, 2016,32(21):3336-3338. | [64] | Prykhozhij SV, Rajan V, Gaston D, Berman JN . CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One, 2015,10(3):e0119372. | [65] | Xu H, Xiao T, Chen C-H, Li W, Meyer CA, Wu Q, Wu D, Cong L, Zhang F, Liu JS, Brown M, Liu XS . Sequence determinants of improved CRISPR sgRNA design. Genome Res, 2015,25(8):1147-1157. | [66] | Chari R, Mali P, Moosburner M, Church GM . Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods, 2015,12(9):823-826. | [67] | Chen CH, Xiao T, Xu H, Jiang P, Meyer CA, Li W, Brown M, Liu XS . Improved design and analysis of CRISPR knockout screens. Bioinformatics, 2018, doi: 10.1093/bioinformatics/bty450. | [68] | Box GEP, Cox DR . An Analysis of Transformations. J Roy Statist Soc Ser B, 1964,26(2):211-252. | [69] | Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu XB, Makarova KS, Makarova KS, Koonin E, Sharp PA, Zhang F . In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015,520(7546):186-191. | [70] | Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F . Rationally engineered Cas9 nucleases with improved specificity. Science, 2016,351(6268):84-88. | [71] | Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK . GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol, 2015,33(2):187-197. | [72] | Hilton IB, D'ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA . Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol, 2015,33(5):510-517. | [73] | Friedman JH . On bias, variance, 0/1—loss, and the curse-of-dimensionality. Data Min Knowl Disc, 1997,1(1):55-77. | [74] | Grabczewski K, Jankowski N . Mining for complex models comprising feature selection and classification. Feat Extrac, 2004,207:473-489. | [75] | Guyon I, Elisseeff A . An introduction to variable and feature selection. J Mach Learn Res, 2003,3:1157-1182. | [76] | Faraggi D, Reiser B . Estimation of the area under the ROC curve. Stat Med, 2002,21(20):3093-3106. | [77] | Robnik-?ikonja M . Improving Random Forests. Lect Not Comput Sci, 2004,3201:359-370. | [78] | Wu Z, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F . A model-based background adjustment for oligonucleotide expression arrays. Publ Amer Stat Assoc, 2004,99(468):909-917. | [79] | Chen W, Lin H, Feng PM, Ding C, Zuo YC, Chou KC . iNuc-PhysChem: a sequence-based predictor for identifying nucleosomes via physicochemical properties. PLoS One, 2012,7(10):e47843. | [80] | Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, Scott DA, Song J, Pan JQ, Weissleder R, Lee H, Zhang F, Sharp PA . Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell, 2015,160(6):1246-1260. | [81] | Sander JD, Joung JK . CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol, 2014,32(4):347-355. | [82] | Graham DB, Root DE . Resources for the design of CRISPR gene editing experiments. Genome Biol, 2015,16:260. | [83] | Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS . CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013,154(2):442-451. | [84] | Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA . RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods, 2013,10(10):973-976. | [85] | Chuai GH, Wang QL, Liu Q . In silico meets in vivo: towards computational CRISPR-Based sgRNA design. Trends Biotechnol, 2017,35(1):12-21. | [86] | Echeverri CJ, Beachy PA, Baum B, Boutros M, Buchholz F, Chanda SK, Downward J, Ellenberg J, Fraser AG, Hacohen N, Hahn WC, Jackson AL, Kiger A, Linsley PS, Lum L, Ma Y, Mathey-Prevot B, Root DE, Sabatini DM, Taipale J, Perrimon N, Bernards R . Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods, 2006,3(10):777-779. | [87] | Hart T, Brown KR, Sircoulomb F, Rottapel R, Moffat J . Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol Syst Biol, 2014,10:733. | [88] | Morgens DW, Wainberg M, Boyle EA, Ursu O, Araya CL, Tsui CK, Haney MS, Hess GT, Han K, Jeng EE, Li A, Snyder MP, Greenleaf WJ, Kundaje A, Bassik MC . Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens. Nat Commun, 2017,8:15178. | [89] | Yan JF, Chuai GH, Zhou C, Zhu CY, Yang J, Zhang C, Gu F, Xu H, Wei J, Liu Q . Benchmarking CRISPR on-target sgRNA design. Brief Bioinform, 2018,19(4):721-724. | [90] | Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, Irizarry RA, Liu JS, Brown M, Liu XS . MAGeCK enables robust identification of essential genes from genome- scale CRISPR/Cas9 knockout screens. Genome Biol, 2014,15(12):554. | [91] | Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, Bosanac L, Zhang ET, El Beheiry M, Masson JB, Dahan M, Liu Z, Doudna JA, Tjian R . Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science, 2015,350(6262):823-826. | [92] | Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR . Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol, 2015,33(6):661-667. | [93] | Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, Mis M, Zimmermann M, Fradet-Turcotte A, Sun S, Mero P, Dirks P, Sidhu S, Roth FP, Rissland OS, Durocher D, Angers S, Moffat J . High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell, 2015,163(6):1515-1526. | [94] | Ong SH, Li Y, Koike-Yusa H, Yusa K . Optimised metrics for CRISPR-KO screens with second-generation gRNA libraries. Sci Rep, 2017,7(1):7384. | [95] | Evers B, Jastrzebski K, Heijmans JP, Grernrum W, Beijersbergen RL, Bernards R . CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol, 2016,34(6):631-633. | [96] | Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B . Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 2013,155(7):1479-1491. | [97] | Liu H, Wei Z, Dominguez A, Li Y, Wang X, Qi LS . CRISPR-ERA: a comprehensive design tool for CRISPR- mediated gene editing, repression and activation. Bioinformatics, 2015,31(22):3676-3678. | [98] | Horlbeck MA, Witkowsky LB, Guglielmi B, Replogle JM, Gilbert LA, Villalta JE, Torigoe SE, Tjian R, Weissman JS . Nucleosomes impede Cas9 access to DNA in vivo and in vitro. Elife, 2016,5, e12677. | [99] | Vidigal JA, Ventura A . Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries. Nat Commun, 2015,6:8083. | [100] | Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, Degennaro EM, Winblad N, Choudhury SR, Abudayyeh OO, Gootenberg JS, Wu WY, Scott DA, Severinov K, van der Oost J, Zhang F . Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol, 2017,35(1):31-34. | [101] | Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, Hwang J, Kim JI, Kim JS . Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods, 2015,12(3):237-243. | [102] | Kim D, Kim S, Kim S, Park J, Kim JS . Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq. Genome Res, 2016,26(3):406-415. | [103] | Haeussler M, Kai S, Eckert H, Eschstruth A, Mianné J, Renaud JB, Schneidermaunoury S, Shkumatava A, Teboul L, Kent J, Joly JS, Concordet JP . Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol, 2016,17(1):148. | [104] | Li C, Zong Y, Wang Y, Jin S, Zhang D, Song Q, Zhang R, Gao C . Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol, 2018,19(1):59. | [105] | Wei Y, Zhang XH, Li DL . The “new favorite” of gene editing technology—single base editors. Hereditas (Beijing), 2017,39(12):1115-1121 | [105] | 魏瑜, 张晓辉, 李大力 . 基因编辑之“新宠”—单碱基基因组编辑系统. 遗传, 2017,39(12):1115-1121. | [106] | Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR . Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018,556(7699):57-63. | [107] | Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F . RNA editing with CRISPR-Cas13. Science, 2017,358(6366):1019-1027. |
|