遗传 ›› 2024, Vol. 46 ›› Issue (3): 219-231.doi: 10.16288/j.yczz.24-021
鲍艳春1,2(), 戴伶俐2,3, 刘在霞1,2, 马凤英1,2, 王宇4, 刘永斌5, 谷明娟1,2(), 娜日苏1,2(), 张文广1,2,6()
收稿日期:
2024-01-17
修回日期:
2024-02-25
出版日期:
2024-03-20
发布日期:
2024-02-29
通讯作者:
谷明娟,娜日苏,张文广
E-mail:byc107054@163.com;gmj0119@yeah.net;narisu@swu.edu.cn;actgnmbi@aliyun.com
作者简介:
鲍艳春,博士研究生,专业方向:动物遗传育种与繁殖。E-mail: byc107054@163.com
基金资助:
Yanchun Bao1,2(), Lingli Dai2,3, Zaixia Liu1,2, Fengying Ma1,2, Yu Wang4, Yongbin Liu5, Mingjuan Gu1,2(), Risu Na1,2(), Wenguang Zhang1,2,6()
Received:
2024-01-17
Revised:
2024-02-25
Published:
2024-03-20
Online:
2024-02-29
Contact:
Mingjuan Gu, Risu Na, Wenguang Zhang
E-mail:byc107054@163.com;gmj0119@yeah.net;narisu@swu.edu.cn;actgnmbi@aliyun.com
Supported by:
摘要:
CRISPR/Cas9基因编辑技术作为一种高效的基因组编辑方法,在畜牧业遗传改良领域得到了广泛的应用。该技术以高效、精准的特点,为畜牧业发展带来了一场革命。目前,基于CRISPR/Cas9的基因敲除、基因敲入和基因修饰等已被广泛应用,实现了对畜禽物种的重要生产性状进行精准改良。本文介绍了CRISPR/Cas9技术的工作原理及发展历程,重点介绍了该技术在畜禽肌肉生长发育、绒毛纤维生长、乳品质成分、抗病育种以及动物福利中的研究进展,旨在为更深入地了解CRISPR/Cas9技术在畜禽基因编辑上的应用提供参考。
鲍艳春, 戴伶俐, 刘在霞, 马凤英, 王宇, 刘永斌, 谷明娟, 娜日苏, 张文广. CRISPR/Cas9系统在畜禽遗传改良中研究进展[J]. 遗传, 2024, 46(3): 219-231.
Yanchun Bao, Lingli Dai, Zaixia Liu, Fengying Ma, Yu Wang, Yongbin Liu, Mingjuan Gu, Risu Na, Wenguang Zhang. Progress on CRISPR/Cas9 system in the genetic improvement of livestock and poultry[J]. Hereditas(Beijing), 2024, 46(3): 219-231.
[1] | Singh P, Ali SA. Impact of CRISPR-Cas9-based genome engineering in farm animals. Vet Sci, 2021, 8(7): 122. |
[2] |
Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science, 2003, 300(5620): 764.
doi: 10.1126/science.1079512 pmid: 12730594 |
[3] |
Hockemeyer D, Wang HY, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng XD, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol, 2011, 29(8): 731-734.
doi: 10.1038/nbt.1927 pmid: 21738127 |
[4] |
Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346(6213): 1258096.
doi: 10.1126/science.1258096 |
[5] |
Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol, 2014, 32(4): 347-355.
doi: 10.1038/nbt.2842 pmid: 24584096 |
[6] |
Baliou S, Adamaki M, Kyriakopoulos AM, Spandidos DA, Panayiotidis M, Christodoulou I, Zoumpourlis V. CRISPR therapeutic tools for complex genetic disorders and cancer (Review). Int J Oncol, 2018, 53(2): 443-468.
doi: 10.3892/ijo.2018.4434 pmid: 29901119 |
[7] |
Kruminis-Kaszkiel E, Juranek J, Maksymowicz W, Wojtkiewicz J. CRISPR/Cas9 technology as an emerging tool for targeting amyotrophic lateral sclerosis (ALS). Int J Mol Sci, 2018, 19(3): 906.
doi: 10.3390/ijms19030906 |
[8] |
Belk JA, Yao W, Ly N, Freitas KA, Chen YT, Shi QM, Valencia AM, Shifrut E, Kale N, Yost KE, Duffy CV, Daniel B, Hwee MA, Miao Z, Ashworth A, Mackall CL, Marson A, Carnevale J, Vardhana SA, Satpathy AT. Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. Cancer Cell, 2022, 40(7): 768-786.
doi: 10.1016/j.ccell.2022.06.001 |
[9] |
Ferrari G, Thrasher AJ, Aiuti A. Gene therapy using haematopoietic stem and progenitor cells. Nat Rev Genet, 2021, 22(4): 216-234.
doi: 10.1038/s41576-020-00298-5 pmid: 33303992 |
[10] |
Nuñez JK, Lee ASY, Engelman A, Doudna JA. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature, 2015, 519(7542): 193-198.
doi: 10.1038/nature14237 |
[11] |
Makarova KS, Koonin EV. Annotation and classification of CRISPR-Cas systems. Methods Mol Biol, 2015, 1311: 47-75.
doi: 10.1007/978-1-4939-2687-9_4 pmid: 25981466 |
[12] |
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol, 1987, 169(12): 5429-5433.
doi: 10.1128/jb.169.12.5429-5433.1987 pmid: 3316184 |
[13] |
Pavletich NP, Pabo CO. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science, 1991, 252(5007): 809-817.
pmid: 2028256 |
[14] |
Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA, 1996, 93(3): 1156-1160.
doi: 10.1073/pnas.93.3.1156 pmid: 8577732 |
[15] |
Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010, 327(5962): 167-170.
doi: 10.1126/science.1179555 pmid: 20056882 |
[16] |
Jansen R, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002, 43(6): 1565-1575.
doi: 10.1046/j.1365-2958.2002.02839.x pmid: 11952905 |
[17] |
Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 2002; 161(3): 1169-1175.
doi: 10.1093/genetics/161.3.1169 pmid: 12136019 |
[18] |
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712.
doi: 10.1126/science.1138140 pmid: 17379808 |
[19] |
Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010, 186(2): 757-761.
doi: 10.1534/genetics.110.120717 pmid: 20660643 |
[20] |
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao YJ, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340): 602-607.
doi: 10.1038/nature09886 |
[21] |
Li TM, Du B. CRISPR-Cas system and coevolution of bacteria and phages. Yi Chuan, 2011, 33(3): 213-218.
doi: 10.3724/SP.J.1005.2011.00213 |
[22] |
Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM.RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826.
doi: 10.1126/science.1232033 pmid: 23287722 |
[23] | Koike-Yusa H, Li YL, Tan EP, Velasco-Herrera MDC, Yusa K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol, 2014, 32(3): 267-273. |
[24] |
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603): 420-424.
doi: 10.1038/nature17946 |
[25] |
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149-157.
doi: 10.1038/s41586-019-1711-4 |
[26] |
Liu Y, Zou RS, He SX, Nihongaki Y, Li XG, Razavi S, Wu B, Ha T. Very fast CRISPR on demand. Science, 2020, 368(6496): 1265-1269.
doi: 10.1126/science.aay8204 pmid: 32527834 |
[27] |
Kunin V, Sorek R, Hugenholtz P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol, 2007, 8(4): R61.
doi: 10.1186/gb-2007-8-4-r61 pmid: 17442114 |
[28] |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821.
doi: 10.1126/science.1225829 pmid: 22745249 |
[29] |
Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010, 468(7320): 67-71.
doi: 10.1038/nature09523 |
[30] |
Rouet P, Smih F, Jasin M. Introduction of double- strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol, 1994, 14(12): 8096-8106.
doi: 10.1128/mcb.14.12.8096-8106.1994 pmid: 7969147 |
[31] |
Marraffini LA, Sontheimer EJ. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature, 2010, 463(7280): 568-571.
doi: 10.1038/nature08703 |
[32] |
Yu JSL, Yusa K. Genome-wide CRISPR-Cas9 screening in mammalian cells. Methods, 2019, 164-165: 29-35.
doi: S1046-2023(18)30319-0 pmid: 31034882 |
[33] |
Ge LX, Dong XC, Gong XT, Kang J, Zhang Y, Quan FS. Mutation in myostatin 3'UTR promotes C2C12 myoblast proliferation and differentiation by blocking the translation of MSTN. Int J Biol Macromol, 2020, 154: 634-643.
doi: S0141-8130(20)30363-9 pmid: 32156541 |
[34] |
Zhou SW, Kalds P, Luo Q, Sun KX, Zhao XE, Gao YW, Cai B, Huang SH, Kou QF, Petersen B, Chen YL, Ma BH, Wang XL. Optimized Cas9: sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality. BMC Genomics, 2022, 23(1): 348.
doi: 10.1186/s12864-022-08594-6 |
[35] | Gim GM, Kwon DH, Eom KH, Moon J, Park JH, Lee WW, Jung DJ, Kim DH, Yi JK, Ha JJ, Lim KY, Kim JS, Jang G.Production of MSTN-mutated cattle without exogenous gene integration using CRISPR-Cas9. Biotechnol J, 2022, 17(7): e2100198. |
[36] |
Lyu M, Wang X, Meng XY, Qian HR, Li Q, Ma BX, Zhang ZY, Xu K. chi-miR-487b-3p inhibits goat myoblast proliferation and differentiation by targeting IRS1 through the IRS1/PI3K/Akt signaling pathway. Int J Mol Sci, 2021, 23(1): 115.
doi: 10.3390/ijms23010115 |
[37] |
Zhang J, Liu J, Yang WL, Cui ML, Dai B, Dong YH, Yang J, Zhang XM, Liu DJ, Liang H, Cang M. Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats. Theriogenology, 2019, 132: 1-11.
doi: S0093-691X(19)30079-2 pmid: 30981084 |
[38] |
Wang X, Niu Y, Zhou J, Zhu H, Ma B, Yu H, Yan H, Hua J, Huang X, Qu L, Chen Y. CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass. Anim Genet, 2018, 49(1): 43-51.
doi: 10.1111/age.12626 pmid: 29446146 |
[39] |
Guo RH, Wan Y, J Xu D, Cui LB, Deng MT, Zhang GM, Jia RX, Zhou WJ, Wang Z, Deng KP, Huang MR, Wang F, Zhang YL. Generation and evaluation of Myostatin knock-out rabbits and goats using CRISPR/Cas9 system. Sci Rep, 2016, 6: 29855.
doi: 10.1038/srep29855 pmid: 27417210 |
[40] |
Li C, Zhou SW, Li Y, Li GW, Ding YG, Li L, Liu J, Qu L, Sonstegard T, Huang XX, Jiang Y, Chen YL, Petersen B, Wang XL. Trio-based deep sequencing reveals a low incidence of off-target mutations in the offspring of genetically edited goats. Front Genet, 2018, 9: 449.
doi: 10.3389/fgene.2018.00449 pmid: 30356875 |
[41] | He ZY, Zhang T, Jiang L, Zhou MY, Wu DJ, Mei JY, Cheng Y. Use of CRISPR/Cas9 technology efficiently targetted goat myostatin through zygotes microinjection resulting in double-muscled phenotype in goats. Biosci Rep, 2018, 38(6): BSR20180742. |
[42] |
Li RQ, Zeng W, Ma M, Wei ZX, Liu HB, Liu XF, Wang M, Shi X, Zeng JH, Yang LF, Mo DL, Liu XH, Chen YS, He ZY. Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs. Transgenic Res, 2020, 29(1): 149-163.
doi: 10.1007/s11248-020-00188-w pmid: 31927726 |
[43] |
Kim GD, Lee JH, Song SM, Kim SW, Han JS, Shin SP, Park BC, Park TS. Generation of myostatin-knockout chickens mediated by D10A-Cas9 nickase. FASEB J, 2020, 34(4): 5688-5696.
doi: 10.1096/fsb2.v34.4 |
[44] |
Moro LN, Viale DL, Bastón JI, Arnold V, Suvá M, Wiedenmann E, Olguín M, Miriuka S, Vichera G. Generation of myostatin edited horse embryos using CRISPR/Cas9 technology and somatic cell nuclear transfer. Sci Rep, 2020, 10(1): 15587.
doi: 10.1038/s41598-020-72040-4 pmid: 32973188 |
[45] | Zhou D, Wang Y, Yang R, Wang F, Zhao ZH, Wang X, Xie LL, Tian XZ, Wang GZ, Li B, Gong Y. The MyoD1 promoted muscle differentiation and generation by activating CCND2 in Guanling cattle. Animals(Basel), 2022, 12(19): 2571. |
[46] |
Roberston MJ, Raghunathan S, Potaman VN, Zhang F, Stewart MD, McConnell BK, Schwartz RJ. CRISPR- Cas9-induced IGF1 gene activation as a tool for enhancing muscle differentiation via multiple isoform expression. FASEB J, 2020, 34(1): 555-570.
doi: 10.1096/fj.201901107RR pmid: 31914652 |
[47] | Zou HY, Yu DW, Yao S, Ding FR, Li JL, Li L, Li X, Zhao SJ, Pang YW, Hao HS, Du WH, Zhao XM, Dai YP, Zhu HB. Efficient editing of the ZBED6-binding site in intron 3 of IGF2 in a bovine model using the CRISPR/Cas9 system. Genes(Basel), 2022, 13(7): 1132. |
[48] |
Xiang GH, Ren JL, Hai T, Fu R, Yu DW, Wang J, Li W, Wang HY, Zhou Q. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs. Cell Mol Life Sci, 2018, 75(24): 4619-4628.
doi: 10.1007/s00018-018-2917-6 pmid: 30259067 |
[49] |
Li MJ, Tang XC, You WN, Wang YB, Chen YW, Liu Y, Yuan HM, Gao C, Chen X, Xiao ZW, Ouyang HS, Pang DX. Erratum: HMEJ-mediated site-specific integration of a myostatin inhibitor increases skeletal muscle mass in porcine. Mol Ther Nucleic Acids, 2021, 26: 49-62.
doi: 10.1016/j.omtn.2021.06.011 |
[50] | Gu H, Zhou Y, Yang JZ, Li JN, Peng YX, Zhang X, Miao YL, Jiang W, Bu GW, Hou LM, Li T, Zhang L, Xia XL, Ma ZY, Xiong YZ, Zuo B. Targeted overexpression of PPARγ in skeletal muscle by random insertion and CRISPR/Cas9 transgenic pig cloning enhances oxidative fiber formation and intramuscular fat deposition. FASEB J, 2021, 35(2): e21308. |
[51] | Zhao YF, Yang L, Su GH, Wei ZY, Liu XF, Song LS, Hai C, Wu D, Hao ZT, Wu YX, Zhang L, Bai CL, Li GP. Growth traits and sperm proteomics analyses of myostatin gene-edited Chinese Yellow Cattle. Life (Basel), 2022, 12(5): 627. |
[52] |
Ge LX, Kang J, Dong XC, Luan DJ, Su GH, Li GP, Zhang Y, Quan FS. Myostatin site-directed mutation and simultaneous PPARγ site-directed knockin in bovine genome. J Cell Physiol, 2021, 236(4): 2592-2605.
doi: 10.1002/jcp.v236.4 |
[53] |
Hu R, Fan ZY, Wang BY, Deng SL, Zhang XS, Zhang JL, Han HB, Lian ZX. RAPID COMMUNICATION: generation of FGF5 knockout sheep via the CRISPR/Cas9 system. J Anim Sci, 2017, 95(5): 2019-2024.
doi: 10.2527/jas.2017.1503 pmid: 28727005 |
[54] |
Li WR, Liu CX, Zhang XM, Chen L, Peng XR, He SG, Lin JP, Han B, Wang LQ, Huang JC, Liu MJ. CRISPR/ Cas9-mediated loss of FGF5 function increases wool staple length in sheep. FEBS J, 2017, 284(17): 2764-2773.
doi: 10.1111/febs.2017.284.issue-17 |
[55] |
Wang XL, Cai B, Zhou JK, Zhu HJ, Niu YY, Ma BH, Yu HH, Lei AM, Yan HL, Shen QY, Shi L, Zhao XE, Hua JL, Huang XX, Qu L, Chen YL. Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PLoS One, 2016, 11(10): e0164640.
doi: 10.1371/journal.pone.0164640 |
[56] |
Zhang XM, Li WR, Liu CX, Peng XR, Lin JP, He SG, Li XJ, Han B, Zhang N, Wu YS, Chen L, Wang LQ, Ma Yila, Huang JC, Liu MJ.Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9. Sci Rep, 2017, 7(1): 8149.
doi: 10.1038/s41598-017-08636-0 pmid: 28811591 |
[57] |
Hu X, Hao F, Li XC, Xun ZY, Gao Y, Ren BX, Cang M, Liang H, Liu D. Generation of VEGF knock-in cashmere goat via the CRISPR/Cas9 system. Int J Biol Sci, 2021, 17(4): 1026-1040.
doi: 10.7150/ijbs.55559 pmid: 33867826 |
[58] |
Li XC, Hao F, Hu X, Wang H, Dai B, Wang X, Liang H, Cang M, Liu DJ.Generation of Tβ4 knock-in cashmere goat using CRISPR/Cas9. Int J Biol Sci, 2019, 15(8): 1743-1754.
doi: 10.7150/ijbs.34820 pmid: 31360116 |
[59] |
Wang XL, Yu HH, Lei AM, Zhou JK, Zeng WX, Zhu HJ, Dong ZM, Niu YY, Shi BB, Cai B, Liu JW, Huang S, Yan HL, Zhao XE, Zhou GX, He XL, Chen XX, Yang YX, Jiang Y, Shi L, Tian X, Wang YJ, Ma BH, Huang XX, Qu L, Chen YL. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep, 2015, 5: 13878.
doi: 10.1038/srep13878 pmid: 26354037 |
[60] | Alessio A, Pericuesta E, Llamas-Toranzo I, Forcato D, Fili A, Liaudat C, Rodriguez N, Kues W, Bermejo-Álvarez P, Bosch P. 203 genome modifications by sleeping beauty transposition and CRISPR/Cas9 to improve cow milk composition for human consumption. Reprod Fertil Dev, 2018, 30(1): 242. |
[61] |
Silaeva YY, Kubekina MV, Bruter AV, Isaeva AG, Koshchaev AG. Gene editing CRISPR/Cas9 system for producing cows with hypoallergenic milk on the background of a beta-lactoglobulin gene knockout. E3S Web of Conferences, 2020, 176: 01006.
doi: 10.1051/e3sconf/202017601006 |
[62] |
Singina GN, Sergiev PV, Lopukhov AV, Rubtsova MP, Taradajnic NP, Ravin NV, Shedova EN, Taradajnic TE, Polejaeva IA, Dozev AV, Brem G, Dontsova OA, Zinovieva NA. Production of a cloned offspring and CRISPR/Cas9 genome editing of embryonic fibroblasts in cattle. Dokl Biochem Biophys, 2021, 496(1): 48-51.
doi: 10.1134/S1607672921010099 pmid: 33689075 |
[63] |
Zhou WJ, Wan YJ, Guo RH, Deng MT, Deng KP, Wang Z, Zhang YL, Wang F.Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9. PloS One, 2017, 12(10): e0186056.
doi: 10.1371/journal.pone.0186056 |
[64] |
Tian HB, Luo J, Zhang ZF, Wu J, Zhang TY, Busato S, Huang L, Song N, Bionaz M. CRISPR/Cas9-mediated stearoyl-CoA desaturase 1 (SCD1) deficiency affects fatty acid metabolism in goat mammary epithelial cells. J Agric Food Chem, 2018, 66(38): 10041-10052.
doi: 10.1021/acs.jafc.8b03545 |
[65] |
Tian HB, Niu HM, Luo J, Yao WW, Chen XY, Wu J, Geng YN, Gao WC, Lei AM, Gao ZM, Tian X, Zhao X, Shi HP, Li C, Hua JL. Knockout of stearoyl-CoA desaturase 1 decreased milk fat and unsaturated fatty acid contents of the goat model generated by CRISPR/Cas9. J Agric Food Chem, 2022, 70(13): 4030-4043.
doi: 10.1021/acs.jafc.2c00642 |
[66] |
Huang L, Tian HB, Luo J, Song N, Wu J. CRISPR/Cas9 based knockout of miR-145 affects intracellular fatty acid metabolism by targeting INSIG1 in goat mammary epithelial cells. J Agric Food Chem, 2020, 68(18): 5138-5146.
doi: 10.1021/acs.jafc.0c00845 |
[67] |
Huang L, Luo J, Gao WC, Song N, Tian HB, Zhu L, Jiang QM, Loor JJ. CRISPR/Cas9-induced knockout of miR-24 reduces cholesterol and monounsaturated fatty acid content in primary goat mammary epithelial cells. Foods, 2022, 11(14): 2012.
doi: 10.3390/foods11142012 |
[68] |
Huang L, Luo J, Song N, Gao WC, Zhu L, Yao WW. CRISPR/Cas9-mediated knockout of miR-130b affects mono- and polyunsaturated fatty acid content via PPARG-PGC1α axis in goat mammary epithelial cells. Int J Mol Sci, 2022, 23(7): 3640.
doi: 10.3390/ijms23073640 |
[69] |
Gao F, Li P, Yin Y, Du XG, Cao GS, Wu S, Zhao YF. Molecular breeding of livestock for disease resistance. Virology, 2023, 587: 109862.
doi: 10.1016/j.virol.2023.109862 |
[70] | Lee CW, Kc M, Ngunjiri JM, Ghorbani A, Lee K. TLR3 and MDA5 knockout DF-1 cells enhance replication of avian orthoavulavirus 1. Avian Dis, 2023, 67(1): 94-101. |
[71] |
Wang L, Xue Z, Wang JP, Jian YW, Lu HZ, Ma HD, Wang SS, Zeng WX, Zhang T. Targeted knockout of Mx in the DF-1 chicken fibroblast cell line impairs immune response against Newcastle disease virus. Poult Sci, 2023, 102(9): 102855.
doi: 10.1016/j.psj.2023.102855 |
[72] |
Shandilya UK, Sharma A, Mallikarjunappa S, Guo J, Mao Y, Meade KG, Karrow NA. CRISPR-Cas9-mediated knockout of TLR4 modulates Mycobacterium avium ssp. paratuberculosis cell lysate-induced inflammation in bovine mammary epithelial cells. J Dairy Sci, 2021, 104(10): 11135-11146.
doi: 10.3168/jds.2021-20305 pmid: 34253365 |
[73] |
Wang H, Wang XX, Li XR, Wang QW, Qing SZ, Zhang Y, Gao MQ. A novel long non-coding RNA regulates the immune response in MAC-T cells and contributes to bovine mastitis. FEBS J, 2019, 286(9): 1780-1795.
doi: 10.1111/febs.14783 pmid: 30771271 |
[74] | Pinzon-Arteaga C, Snyder MD, Lazzarotto CR, Moreno NF, Juras R, Raudsepp T, Golding MC, Varner DD, Long CR. Efficient correction of a deleterious point mutation in primary horse fibroblasts with CRISPR-Cas9. Sci Rep, 2020, 10(1): 7411. |
[75] |
Huang J, Wang AT, Huang C, Sun YF, Song BX, Zhou R, Li L. Generation of marker-free pbd-2 knock-in pigs using the CRISPR/Cas9 and Cre/loxP systems. Genes (Basel), 2020, 11(8): 951.
doi: 10.3390/genes11080951 |
[76] |
Cai SQ, Zheng ZZ, Cheng JJ, Zhong LT, Shao R, Zheng FY, Lai ZY, Ou JJ, Xu L, Zhou P, Lu G, Zhang GH. Swine interferon-inducible transmembrane proteins potently inhibit African swine fever virus replication. Front Immunol, 2022, 13: 827709.
doi: 10.3389/fimmu.2022.827709 |
[77] |
Gao YP, Wu HB, Wang YS, Liu X, Chen LL, Li Q, Cui CC, Liu X, Zhang JC, Zhang Y. Single Cas 9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol, 2017, 18(1): 13.
doi: 10.1186/s13059-016-1144-4 |
[78] |
Hou ST, Wang XW, Ren SH, Meng XL, Yin XP, Zhang J, Tarasiuk K, Pejsak Z, Jiang T, Mao RQ, Zhang YG, Sun YF. Knockout of HDAC9 gene enhances foot-and-mouth disease virus replication. Front Microbiol, 2022, 13: 805606.
doi: 10.3389/fmicb.2022.805606 |
[79] | Hagag IT, Wight DJ, Bartsch D, Sid H, Jordan I, Bertzbach LD, Schusser B, Kaufer BB. Abrogation of Marek’s disease virus replication using CRISPR/Cas9. Sci Rep, 2020, 10(1): 10919. |
[80] |
Leveringhaus E, Cagatay GN, Hardt J, Becher P, Postel A. Different impact of bovine complement regulatory protein 46 (CD46bov) as a cellular receptor for members of the species Pestivirus H and Pestivirus G. Emerg Microbes Infect, 2022, 11(1): 60-72.
doi: 10.1080/22221751.2021.2011620 |
[81] |
Pan YD, Guo LJ, Miao Q, Wu L, Jing ZY, Tian J, Feng L. Association of THBS3 with glycoprotein D promotes pseudorabies virus attachment, fusion, and entry. J Virol, 2023, 97(2): e0187122.
doi: 10.1128/jvi.01871-22 |
[82] |
Xu K, Zhou YR, Mu YL, Liu ZG, Hou SH, Xiong YJ, Fang LR, Ge CL, Wei YH, Zhang XL, Xu CJ, Che JJ, Fan ZY, Xiang GM, Guo JK, Shang HT, Li H, Xiao SB, Li JL, Li K. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance. ELife, 2020, 9: e57132.
doi: 10.7554/eLife.57132 |
[83] | Menchaca A. Sustainable food production: the contribution of genome editing in livestock. Sustainability (Basel), 2021, 13(12): 6788. |
[84] |
Hennig SL, Owen JR, Lin JC, McNabb BR, Van Eenennaam AL, Murray JD. A deletion at the polled PC locus alone is not sufficient to cause a polled phenotype in cattle. Sci Rep, 2022, 12(1): 2067.
doi: 10.1038/s41598-022-06118-6 pmid: 35136148 |
[85] |
Flórez JM, Martins K, Solin S, Bostrom JR, Rodríguez- Villamil P, Ongaratto F, Larson SA, Ganbaatar U, Coutts AW, Kern D, Murphy TW, Kim ES, Carlson DF, Huisman A, Sonstegard TS, Lents CA. CRISPR/Cas9- editing of KISS1 to generate pigs with hypogonadotropic hypogonadism as a castration free trait. Front Genet, 2022, 13: 1078991.
doi: 10.3389/fgene.2022.1078991 |
[86] |
Hansen PJ. Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle. Theriogenology, 2020, 154: 190-202.
doi: S0093-691X(20)30294-6 pmid: 32622199 |
[1] | 卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740. |
[2] | 王秉政, 张超, 张佳丽, 孙锦. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45(7): 593-601. |
[3] | 陈晓, 陆健, 于福清. 国外畜禽遗传资源保护及对我国的启示[J]. 遗传, 2023, 45(7): 545-552. |
[4] | 吴仲胜, 高誉, 杜勇涛, 党颂, 何康敏. CRISPR-Cas9基因编辑技术对细胞内源蛋白进行荧光标记的实验操作[J]. 遗传, 2023, 45(2): 165-175. |
[5] | 汪佳豪, 赵卿尧, 周月玲, 史良玉, 王楚端, 俞英. 基因芯片在畜禽遗传育种中的应用及展望[J]. 遗传, 2023, 45(12): 1114-1127. |
[6] | 刘梅珍, 王立人, 李咏梅, 马雪云, 韩红辉, 李大力. 利用CRISPR/Cas9技术构建基因编辑大鼠模型[J]. 遗传, 2023, 45(1): 78-87. |
[7] | 张潇筠, 徐坤, 沈俊岑, 穆璐, 钱泓润, 崔婕妤, 马宝霞, 陈知龙, 张智英, 魏泽辉. 一种新型提高HDR效率的CRISPR/Cas9-Gal4BD供体适配基因编辑系统[J]. 遗传, 2022, 44(8): 708-719. |
[8] | 张充, 魏子璇, 王敏, 陈瑶生, 何祖勇. 利用CRISPR/Cas9在人类黑色素瘤细胞中编辑MC1R与功能分析[J]. 遗传, 2022, 44(7): 581-590. |
[9] | 刘尧, 周先辉, 黄舒泓, 王小龙. 引导编辑:突破碱基编辑类型的新技术[J]. 遗传, 2022, 44(11): 993-1008. |
[10] | 韩玉婷, 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-14. |
[11] | 杨金艳, 刘雪琴, 文天琦, 孙愉洪, 俞英. lncRNA调控畜禽抗病力性状研究进展[J]. 遗传, 2021, 43(7): 654-664. |
[12] | 王海涛, 李亭亭, 黄勋, 马润林, 刘秋月. 遗传修饰技术在绵羊分子设计育种中的应用[J]. 遗传, 2021, 43(6): 580-600. |
[13] | 杨光武, 田嫄. 果蝇F-box基因Ppa促进脂肪储存[J]. 遗传, 2021, 43(6): 615-622. |
[14] | 彭定威, 李瑞强, 曾武, 王敏, 石翾, 曾检华, 刘小红, 陈瑶生, 何祖勇. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. |
[15] | 王娜, 甲芝莲, 吴强. RFX5调控原钙粘蛋白α基因簇的表达[J]. 遗传, 2020, 42(8): 760-774. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: