遗传 ›› 2023, Vol. 45 ›› Issue (9): 718-740.doi: 10.16288/j.yczz.23-092
卞中(), 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林()
收稿日期:
2023-04-10
修回日期:
2023-05-02
出版日期:
2023-09-20
发布日期:
2023-06-08
通讯作者:
张林
E-mail:957975527@qq.com;zhangl@yzu.edu.cn
作者简介:
卞中,博士研究生,专业方向:作物遗传育种。E-mail: 基金资助:
Zhong Bian(), Dongping Cao, Wenshu Zhuang, Shuwei Zhang, Qiaoquan Liu, Lin Zhang()
Received:
2023-04-10
Revised:
2023-05-02
Online:
2023-09-20
Published:
2023-06-08
Contact:
Lin Zhang
E-mail:957975527@qq.com;zhangl@yzu.edu.cn
Supported by:
摘要:
水稻是世界上最重要的粮食作物之一,养育了全球超过1/2的人口。随着人口增加及气候条件变化,当前对水稻品种产量及其他综合性状表现提出了更高要求。分子设计育种概念的提出为快速突破现有品种的局限提供了契机,然而如何在育种实践中有效实现不同基因的组合利用是需要关注的重点。本文结合近年来水稻分子标记辅助选择(maker assisted selection,MAS)育种及重要性状基因编辑育种研究进展,对分子设计育种可能涉及的不同方面进行了归纳总结,既包括关键育种基因及其组合的遗传效应、不同回交世代遗传背景恢复特点、连锁累赘及重组筛选等经典MAS遗传规律总结,也涵盖高通量基因分型技术利用、基因编辑创制有利性状变异的实现途径及其效果等前沿技术应用评价。最后,结合当前水稻育种现状及实际需求,对传统育种资源及现代分子技术的综合利用策略进行了展望,以期为今后进一步优化分子设计育种流程提供思路。
卞中, 曹东平, 庄文姝, 张舒玮, 刘巧泉, 张林. 水稻分子设计育种启示:传统与现代相结合[J]. 遗传, 2023, 45(9): 718-740.
Zhong Bian, Dongping Cao, Wenshu Zhuang, Shuwei Zhang, Qiaoquan Liu, Lin Zhang. Revelation of rice molecular design breeding: the blend of tradition and modernity[J]. Hereditas(Beijing), 2023, 45(9): 718-740.
[1] |
Ray DK, Mueller ND, West PC, Foley JA. Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013, 8(6): e66428.
doi: 10.1371/journal.pone.0066428 |
[2] |
Qian Q, Guo LB, Smith SM, Li JY. Breeding high-yield superior quality hybrid super rice by rational design. Natl Sci Rev, 2016, 3(3): 283-294.
doi: 10.1093/nsr/nww006 |
[3] |
Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416(6882): 701-702.
doi: 10.1038/416701a |
[4] |
Luo DP, Xu H, Liu ZL, Guo JX, Li HY, Chen LT, Fang C, Zhang QY, Bai M, Yao N, Wu H, Wu H, Ji CH, Zheng HQ, Chen YL, Ye S, Li XY, Zhao XC, Li RQ, Liu YG. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet, 2013, 45(5): 573-577.
doi: 10.1038/ng.2570 pmid: 23502780 |
[5] |
Peng S, Cassman KG, Virmani SS, Sheehy J, Khush GS. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci, 1999, 39(6): 1552-1559.
doi: 10.2135/cropsci1999.3961552x |
[6] |
Khush GS. Green revolution: the way forward. Nat Rev Genet, 2001, 2(10): 815-822.
doi: 10.1038/35093585 pmid: 11584298 |
[7] |
Peng S, Khush GS, Virk P, Tang Q, Zou Y. Progress in ideotype breeding to increase rice yield potential. Field Crop Res, 2008, 108(1): 32-38.
doi: 10.1016/j.fcr.2008.04.001 |
[8] |
Zhang QF. Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007, 104(42): 16402-16409.
doi: 10.1073/pnas.0708013104 pmid: 17923667 |
[9] |
Yu H, Lin T, Meng XB, Du HL, Zhang JK, Liu GF, Chen MJ, Jing YH, Kou LQ, Li XX, Gao Q, Liang Y, Liu XD, Fan ZL, Liang YT, Cheng ZK, Chen MS, Tian ZX, Wang YH, Chu CC, Zuo JR, Wan JM, Qian Q, Han B, Zuccolo A, Wing RA, Gao CX, Liang CZ, Li JY. A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184(5): 1156-1170.e1114.
doi: 10.1016/j.cell.2021.01.013 |
[10] |
Li Y, Xiao JH, Chen LL, Huang XH, Cheng ZK, Han B, Zhang QF, Wu CY. Rice functional genomics research: past decade and future. Mol Plant, 2018, 11(3): 359-380.
doi: S1674-2052(18)30027-3 pmid: 29409893 |
[11] |
Wei X, Qiu J, Yong KC, Fan JJ, Zhang Q, Hua H, Liu J, Wang Q, Olsen KM, Han B, Huang XH. A quantitative genomics map of rice provides genetic insights and guides breeding. Nat Genet, 2021, 53(2): 243-253.
doi: 10.1038/s41588-020-00769-9 pmid: 33526925 |
[12] |
Liu YQ, Wang HR, Jiang ZM, Wang W, Xu RN, Wang QH, Zhang ZH, Li AF, Liang Y, Ou SJ, Liu XJ, Cao SY, Tong HN, Wang YH, Zhou F, Liao H, Hu B, Chu CC. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 2021, 590(7847): 600-605.
doi: 10.1038/s41586-020-03091-w |
[13] |
Kan Y, Mu XR, Zhang H, Gao J, Shan JX, Ye WW, Lin HX. TT2 controls rice thermotolerance through SCT1- dependent alteration of wax biosynthesis. Nat Plants, 2022, 8(1): 53-67.
doi: 10.1038/s41477-021-01039-0 pmid: 34992240 |
[14] |
Zhang H, Zhou JF, Kan Y, Shan JX, Ye WW, Dong NQ, Guo T, Xiang YH, Yang YB, Li YC, Zhao HY, Yu HX, Lu ZQ, Guo SQ, Lei JJ, Liao B, Mu XR, Cao YJ, Yu JJ, Lin Y, Lin HX. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science, 2022, 376(6599): 1293-1300.
doi: 10.1126/science.abo5721 pmid: 35709289 |
[15] |
Wu YY, Chen Y, Pan CH, Xiao N, Yu L, Li YH, Zhang XX, Pan XB, Chen XJ, Liang CZ, Dai ZY, Li AH. Development and Evaluation of near-isogenic lines with different blast resistance alleles at the Piz locus in japonica rice from the lower region of the Yangtze river, China. Plant Dis, 2017, 101(7): 1283-1291.
doi: 10.1094/PDIS-12-16-1855-RE |
[16] | Xiao N, Wu YY, Pan CH, Yu L, Chen Y, Liu GQ, Li YH, Zhang XX, Wang ZP, Dai ZY, Liang CZ, Li AH. Improving of rice blast resistances in japonica by pyramiding major R genes. Front Plant Sci, 2016, 7: 1918. |
[17] | Wu YY, Xiao N, Chen Y, Yu L, Pan CH, Li YH, Zhang XX, Huang NS, Ji HJ, Dai ZY, Chen XJ, Li AH. Comprehensive evaluation of resistance effects of pyramiding lines with different broad-spectrum resistance genes against Magnaporthe oryzae in rice (Oryza sativa L.). Rice (N Y), 2019, 12(1): 11. |
[18] | Yang DB, Tang JH, Yang D, Chen Y, Ali J, Mou TM. Improving rice blast resistance of Feng39S through molecular marker-assisted backcrossing. Rice (N Y), 2019, 12(1): 70. |
[19] | Jiang HC, Li Z, Liu J, Shen ZK, Gao GJ, Zhang QL, He YQ. Development and evaluation of improved lines with broad-spectrum resistance to rice blast using nine resistance genes. Rice (N Y), 2019, 12(1): 29. |
[20] |
Khanna A, Sharma V, Ellur RK, Shikari AB, Gopala Krishnan S, Singh UD, Prakash G, Sharma TR, Rathour R, Variar M, Prashanthi SK, Nagarajan M, Vinod KK, Bhowmick PK, Singh NK, Prabhu KV, Singh BD, Singh AK. Development and evaluation of near-isogenic lines for major blast resistance gene(s) in Basmati rice. Theor Appl Genet, 2015, 128(7): 1243-1259.
doi: 10.1007/s00122-015-2502-4 pmid: 25869921 |
[21] | Pandian BA, Joel J, Nachimuthu VV, Swaminathan M, Govintharaj P, Tannidi S, Sabariappan R.Marker-aided selection and validation of various Pi gene combinations for rice blast resistance in elite rice variety ADT 43. Genet, 2018, 97(4): 945-952. |
[22] | Xiao WM, Yang QY, Huang M, Guo T, Liu YZ, Wang JF, Yang GL, Zhou JY, Yang JY, Zhu XY, Chen ZQ, Wang H. Improvement of rice blast resistance by developing monogenic lines, two-gene pyramids and three-gene pyramid through MAS. Rice (N Y), 2019, 12(1): 78. |
[23] |
Yasuda N, Mitsunaga T, Hayashi K, Koizumi S, Fujita Y. Effects of pyramiding quantitative resistance genes pi21, Pi34, and Pi35 on rice leaf blast disease. Plant Dis, 2015, 99(7): 904-909.
doi: 10.1094/PDIS-02-14-0214-RE |
[24] |
Khan GH, Shikari AB, Vaishnavi R, Najeeb S, Padder BA, Bhat ZA, Parray GA, Bhat MA, Kumar R, Singh NK. Marker-assisted introgression of three dominant blast resistance genes into an aromatic rice cultivar Mushk Budji. Sci Rep, 2018, 8(1): 4091.
doi: 10.1038/s41598-018-22246-4 pmid: 29511225 |
[25] | Jiang HC, Hu J, Li Z, Liu J, Gao GJ, Zhang QL, Xiao JH, He YQ. Evaluation and breeding application of six brown planthopper resistance genes in rice maintainer line Jin 23B. Rice (N Y), 2018, 11(1): 22. |
[26] |
Hu J, Cheng MX, Gao GJ, Zhang QL, Xiao JH, He YQ. Pyramiding and evaluation of three dominant brown planthopper resistance genes in the elite indica rice 9311 and its hybrids. Pest Manag Sci, 2013, 69(7): 802-808.
doi: 10.1002/ps.2013.69.issue-7 |
[27] | Wang Y, Jiang WH, Liu HM, Zeng Y, Du B, Zhu LL, He GC, Chen RZ.Marker assisted pyramiding of Bph6 and Bph9 into elite restorer line93-11 and development of functional marker for Bph9. Rice (N Y), 2017, 10(1): 51. |
[28] | Wang HB, Ye ST, Mou TM. Molecular breeding of rice restorer lines and hybrids for brown planthopper (BPH) resistance using the Bph14 and Bph15 genes. Rice (N Y), 2016, 9(1): 53. |
[29] |
Myint KKM, Fujita D, Matsumura M, Sonoda T, Yoshimura A, Yasui H. Mapping and pyramiding of two major genes for resistance to the brown planthopper (Nilaparvata lugens [Stål in the rice cultivar ADR52. Theor Appl Genet, 2012, 124(3): 495-504.
doi: 10.1007/s00122-011-1723-4 |
[30] |
Qiu YF, Guo JP, Jing SL, Zhu LL, He GC. Development and characterization of japonica rice lines carrying the brown planthopper-resistance genes BPH12 and BPH6. Theor Appl Genet, 2012, 124(3): 485-494.
doi: 10.1007/s00122-011-1722-5 |
[31] |
Sharma PN, Torii A, Takumi S, Mori N, Nakamura C. Marker-assisted pyramiding of brown planthopper (Nilaparvata lugens Stål) resistance genes Bph1 and Bph2 on rice chromosome 12. Hereditas, 2004, 140(1): 61-69.
doi: 10.1111/j.1601-5223.2004.01726.x pmid: 15032948 |
[32] | Liu YL, Chen LM, Liu YQ, Dai HM, He J, Kang HY, Pan G, Huang J, Qiu ZY, Wang Q, Hu JL, Liu LL, Chen YZ, Cheng XN, Jiang L, Wan JM. Marker assisted pyramiding of two brown planthopper resistance genes, Bph3 and Bph27 (t), into elite rice Cultivars. Rice (N Y), 2016, 9(1): 27. |
[33] |
Balachiranjeevi CH, Bhaskar Naik S, Abhilash Kumar V, Harika G, Mahadev Swamy HK, Hajira Sk, Dilip Kumar T, Anila M, Kale RR, Yugender A, Pranathi K, Koushik MBVN, Suneetha K, Bhadana VP, Hariprasad AS, Laha GS, Rekha G, Balachandran SM, Madhav MS, Senguttuvel P, Fiyaz AR, Viraktamath BC, Giri A, Swamy BPM, Jauhar Ali, Sundaram RM. Marker-assisted pyramiding of two major, broad- spectrum bacterial blight resistance genes, Xa21 and Xa33 into an elite maintainer line of rice, DRR17B. PLoS One, 2018, 13(10): e0201271.
doi: 10.1371/journal.pone.0201271 |
[34] |
Hsu YC, Chiu CH, Yap R, Tseng YC, Wu YP. Pyramiding bacterial blight resistance genes in Tainung82 for broad-spectrum resistance using marker-assisted selection. Int J Mol Sci, 2020, 21(4): 1281.
doi: 10.3390/ijms21041281 |
[35] |
Kottapalli KR, Lakshmi Narasu M, Jena KK. Effective strategy for pyramiding three bacterial blight resistance genes into fine grain rice cultivar, Samba Mahsuri, using sequence tagged site markers. Biotechnol Lett, 2010, 32(7): 989-996.
doi: 10.1007/s10529-010-0249-1 pmid: 20349335 |
[36] |
Pradhan SK, Nayak DK, Pandit E, Behera L, Anandan A, Mukherjee AK, Lenka S, Barik DP. Incorporation of bacterial blight resistance genes into lowland rice cultivar through marker-assisted backcross breeding. Phytopathology, 2016, 106(7): 710-718.
doi: 10.1094/PHYTO-09-15-0226-R pmid: 26976728 |
[37] |
Ramalingam J, Savitha P, Alagarasan G, Saraswathi R, Chandrababu R. Functional marker assisted improvement of stable cytoplasmic male sterile lines of rice for bacterial blight resistance. Front Plant Sci, 2017, 8: 1131.
doi: 10.3389/fpls.2017.01131 pmid: 28706525 |
[38] |
Yugander A, Sundaram RM, Singh K, Ladhalakshmi D, Subba Rao LV, Madhav MS, Badri J, Prasad MS, Laha GS. Incorporation of the novel bacterial blight resistance gene Xa38 into the genetic background of elite rice variety Improved Samba Mahsuri. PLoS One, 2018, 13(5): e0198260.
doi: 10.1371/journal.pone.0198260 |
[39] |
Ellur RK, Khanna A, S GK, Bhowmick PK, Vinod KK, Nagarajan M, Mondal KK, Singh NK, Singh K, Prabhu KV, Singh AK. Marker-aided incorporation of Xa38, a novel bacterial blight resistance gene, in PB1121 and comparison of its resistance spectrum with xa13 + Xa21. Sci Rep, 2016, 6: 29188.
doi: 10.1038/srep29188 |
[40] |
Dossa GS, Quibod I, Atienza-Grande G, Oliva R, Maiss E, Vera Cruz C, Wydra K. Rice pyramided line IRBB67 (Xa4/Xa7) homeostasis under combined stress of high temperature and bacterial blight. Sci Rep, 2020, 10(1): 683.
doi: 10.1038/s41598-020-57499-5 pmid: 31959799 |
[41] | Wang SG, Liu W, Lu DB, Lu ZH, Wang XF, Xue J, He XY. Distribution of bacterial blight resistance genes in the main cultivars and application of Xa23 in rice breeding. Front Plant Sci, 2020, 11: 555228. |
[42] | Babu NN, Krishnan SG, Vinod KK, Krishnamurthy SL, Singh VK, Singh MP, Singh R, Ellur RK, Rai V, Bollinedi H, Bhowmick PK, Yadav AK, Nagarajan M, Singh NK, Prabhu KV, Singh AK. Marker aided incorporation of Saltol, a major QTL associated with seedling stage salt tolerance, into Oryza sativa 'Pusa Basmati 1121'. Front Plant Sci, 2017, 8: 41. |
[43] |
Bimpong IK, Manneh B, Sock M, Diaw F, Amoah NKA, Ismail AM, Gregorio G, Singh RK, Wopereis M. Improving salt tolerance of lowland rice cultivar 'Rassi' through marker-aided backcross breeding in West Africa. Plant Sci, 2016, 242: 288-299.
doi: S0168-9452(15)30077-7 pmid: 26566846 |
[44] |
Krishnamurthy SL, Pundir P, Warraich AS, Rathor S, Lokeshkumar BM, Singh NK, Sharma PC. Introgressed Saltol QTL lines improves the salinity tolerance in rice at seedling stage. Front Plant Sci, 2020, 11: 833.
doi: 10.3389/fpls.2020.00833 pmid: 32595689 |
[45] | Singh VK, Singh BD, Kumar A, Maurya S, Krishnan SG, Vinod KK, Singh MP, Ellur RK, Bhowmick PK, Singh AK. Marker-assisted introgression of Saltol QTL enhances seedling stage salt tolerance in the rice variety "Pusa Basmati 1". Int J Genomics, 2018, 2018: 8319879. |
[46] |
Yadav AK, Kumar A, Grover N, Ellur RK, Krishnan SG, Bollinedi H, Bhowmick PK, Vinod KK, Nagarajan M, Krishnamurthy SL, Singh AK. Marker aided introgression of 'Saltol', a major QTL for seedling stage salinity tolerance into an elite basmati rice variety 'Pusa Basmati 1509'. Sci Rep, 2020, 10(1): 13877.
doi: 10.1038/s41598-020-70664-0 pmid: 32887905 |
[47] |
Xu KN, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 2006, 442(7103): 705-708.
doi: 10.1038/nature04920 |
[48] | Siangliw M, Toojinda T, Tragoonrung S, Vanavichit A. Thai jasmine rice carrying QTLch9 (SubQTL) is submergence tolerant. Ann Bot, 2003, 91 Spec No(2): 255-261. |
[49] | Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BCY, Septiningsih EM, Vergara G, Sanchez D, Xu K, Ismail AM, Mackill DJ. A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet, 2007, 115(6): 767-776. |
[50] |
Shamsudin NAA, Swamy BPM, Ratnam W, Sta Cruz MT, Raman A, Kumar A. Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genet, 2016, 17: 30.
doi: 10.1186/s12863-016-0334-0 pmid: 26818269 |
[51] |
Swamy BP, Ahmed HU, Henry A, Mauleon R, Dixit S, Vikram P, Tilatto R, Verulkar SB, Perraju P, Mandal NP, Variar M, Robin S, Chandrababu R, Singh ON, Dwivedi JL, Das SP, Mishra KK, Yadaw RB, Aditya TL, Karmakar B, Satoh K, Moumeni A, Kikuchi S, Leung H, Kumar A. Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega- variety IR64 under drought. PLoS One, 2013, 8(5): e62795.
doi: 10.1371/journal.pone.0062795 |
[52] | Feng XM, Wang C, Nan JZ, Zhang XH, Wang RS, Jiang GQ, Yuan QB, Lin SY. Updating the elite rice variety Kongyu 131 by improving the Gn1a locus. Rice (N Y), 2017, 10(1): 35. |
[53] | Nan JZ, Feng XM, Wang C, Zhang XH, Wang RS, Liu JX, Yuan QB, Jiang GQ, Lin SY.Improving rice grain length through updating the GS3 locus of an elite variety Kongyu 131. Rice (N Y), 2018, 11(1): 21. |
[54] |
Zhang L, Yu H, Ma B, Liu GF, Wang JJ, Wang JM, Gao RC, Li JJ, Liu JY, Xu J, Zhang YY, Li Q, Huang XH, Xu JL, Li JM, Qian Q, Han B, He ZH, Li JY. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat Commun, 2017, 8: 14789.
doi: 10.1038/ncomms14789 pmid: 28317902 |
[55] |
Kim SR, Ramos JM, Hizon RJM, Ashikari M, Virk PS, Torres EA, Nissila E, Jena KK. Introgression of a functional epigenetic OsSPL14(WFP) allele into elite indica rice genomes greatly improved panicle traits and grain yield. Sci Rep, 2018, 8(1): 3833.
doi: 10.1038/s41598-018-21355-4 |
[56] |
Zhang CQ, Zhu JH, Chen SJ, Fan XL, Li QF, Lu Y, Wang M, Yu HX, Yi CD, Tang SZ, Gu MH, Liu QQ. Wx(lv), the ancestral allele of rice Waxy gene. Mol Plant, 2019, 12(8): 1157-1166.
doi: 10.1016/j.molp.2019.05.011 |
[57] |
Zhang CQ, Yang Y, Chen SJ, Liu XJ, Zhu JH, Zhou LH, Lu Y, Li QF, Fan XL, Tang SZ, Gu MH, Liu QQ. A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency. J Integr Plant Biol, 2021, 63(5): 889-901.
doi: 10.1111/jipb.v63.5 |
[58] |
Shi W, Yang Y, Chen S, Xu M. Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breeding, 2008, 22(2): 185-192.
doi: 10.1007/s11032-008-9165-7 |
[59] | Luo YC, Ma TC, Zhang AF, Ong KH, Li Z, Yang JB, Yin ZC. Marker-assisted breeding of the rice restorer line Wanhui 6725 for disease resistance, submergence tolerance and aromatic fragrance. Rice (N Y), 2016, 9(1): 66. |
[60] |
Jamaloddin M, Durga Rani CV, Swathi G, Anuradha C, Vanisri S, Rajan CPD, Krishnam Raju S, Bhuvaneshwari V, Jagadeeswar R, Laha GS, Prasad MS, Satyanarayana PV, Cheralu C, Rajani G, Ramprasad E, Sravanthi P, Arun Prem Kumar N, Aruna Kumari K, Yamini KN, Mahesh D, Sanjeev Rao D, Sundaram RM, Madhav MS. Marker assisted gene pyramiding (MAGP) for bacterial blight and blast resistance into mega rice variety "Tellahamsa". PLoS One, 2020, 15(6): e0234088.
doi: 10.1371/journal.pone.0234088 |
[61] |
Abhilash Kumar V, Balachiranjeevi CH, Bhaskar Naik S, Rambabu R, Rekha G, Harika G, Hajira SK, Pranathi K, Anila M, Kousik M, Vijay Kumar S, Yugander A, Aruna J, Dilip Kumar T, Vijaya Sudhakara Rao K, Hari Prasad AS, Madhav MS, Laha GS, Balachandran SM, Prasad MS, Viraktamath BC, Ravindra Babu V, Sundaram RM. Development of gene-pyramid lines of the elite restorer line, RPHR-1005 possessing durable bacterial blight and blast resistance. Front Plant Sci, 2016, 7: 1195.
doi: 10.3389/fpls.2016.01195 pmid: 27555861 |
[62] | Mi JM, Yang DB, Chen Y, Jiang JF, Mou HP, Huang JB, Ouyang YD, Mou TM. Accelerated molecular breeding of a novel P/TGMS line with broad-spectrum resistance to rice blast and bacterial blight in two-line hybrid rice. Rice (N Y), 2018, 11(1): 11. |
[63] |
Ramalingam J, Raveendra C, Savitha P, Vidya V, Chaithra TL, Velprabakaran S, Saraswathi R, Ramanathan A, Arumugam Pillai MP, Arumugachamy S, Vanniarajan C. Gene pyramiding for achieving enhanced resistance to bacterial blight, blast, and sheath blight diseases in rice. Front Plant Sci, 2020, 11: 591457.
doi: 10.3389/fpls.2020.591457 |
[64] |
Reinke R, Kim SM, Kim BK. Developing japonica rice introgression lines with multiple resistance genes for brown planthopper, bacterial blight, rice blast, and rice stripe virus using molecular breeding. Mol Genet Genomics, 2018, 293(6): 1565-1575.
doi: 10.1007/s00438-018-1470-1 pmid: 29974251 |
[65] |
Muthu V, Abbai R, Nallathambi J, Rahman H, Ramasamy S, Kambale R, Thulasinathan T, Ayyenar B, Muthurajan R. Pyramiding QTLs controlling tolerance against drought, salinity, and submergence in rice through marker assisted breeding. PLoS One, 2020, 15(1): e0227421.
doi: 10.1371/journal.pone.0227421 |
[66] |
Das G, Rao GJ. Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Front Plant Sci, 2015, 6: 698.
doi: 10.3389/fpls.2015.00698 pmid: 26483798 |
[67] |
Zeng DL, Tian ZX, Rao YC, Dong GJ, Yang YL, Huang LC, Leng YJ, Xu J, Sun C, Zhang GH, Hu J, Zhu L, Gao ZY, Hu XM, Guo LB, Xiong GS, Wang YH, Li JY, Qian Q. Rational design of high-yield and superior-quality rice. Nat Plants, 2017, 3: 17031.
doi: 10.1038/nplants.2017.31 pmid: 28319055 |
[68] | Liu MM, Fan FF, He SH, Guo Y, Chen GL, Li NN, Li NW, Yuan HR, Si FF, Yang F, Li SQ. Creation of elite rice with high-yield, superior-quality and high resistance to brown planthopper based on molecular design. Rice (N Y), 2022, 15(1): 17. |
[69] |
Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Latif MA. Marker-assisted introgression of broad- spectrum blast resistance genes into the cultivated MR219 rice variety. J Sci Food Agric, 2017, 97(9): 2810-2818.
doi: 10.1002/jsfa.2017.97.issue-9 |
[70] |
Cui YR, Zhang WY, Lin XY, Xu SZ, Xu JL, Li ZK. Simultaneous improvement and genetic dissection of drought tolerance using selected breeding populations of rice. Front Plant Sci, 2018, 9: 320.
doi: 10.3389/fpls.2018.00320 pmid: 29599789 |
[71] | Zampieri E, Volante A, Marè C, Orasen G, Desiderio F, Biselli C, Canella M, Carmagnola L, Milazzo J, Adreit H, Tharreau D, Poncelet N, Vaccino P, Valè G. Marker- assisted pyramiding of blast-resistance genes in a japonica elite rice cultivar through forward and background selection. Plants (Basel), 2023, 12(4). |
[72] |
Baliyan N, Malik R, Rani R, Mehta K, Vashisth U, Dhillon S, Boora KS. Integrating marker-assisted background analysis with foreground selection for pyramiding bacterial blight resistance genes into Basmati rice. C R Biol, 2018, 341(1): 1-8.
doi: 10.1016/j.crvi.2017.11.003 |
[73] | Ruengphayak S, Chaichumpoo E, Phromphan S, Kamolsukyunyong W, Sukhaket W, Phuvanartnarubal E, Korinsak S, Korinsak S, Vanavichit A. Pseudo- backcrossing design for rapidly pyramiding multiple traits into a preferential rice variety. Rice (N Y), 2015, 8: 7. |
[74] |
Rathour R, Kumar R, Thakur K, Pote TD.Genetic improvement for blast resistance in high-yielding cold- tolerant rice (Oryza sativa L.) cultivar Himalaya 741 by marker-assisted backcross breeding. 3 Biotech, 2022, 12(8): 165.
doi: 10.1007/s13205-022-03244-w pmid: 35845107 |
[75] |
Hur YJ, Cho JH, Park HS, Noh TH, Park DS, Lee JY, Sohn YB, Shin D, Song YC, Kwon YU, Lee JH. Pyramiding of two rice bacterial blight resistance genes, Xa3 and Xa4, and a closely linked cold-tolerance QTL on chromosome 11. Theor Appl Genet, 2016, 129(10): 1861-1871.
doi: 10.1007/s00122-016-2744-9 |
[76] |
Xiao N, Pan CH, Li YH, Wu YY, Cai Y, Lu Y, Wang RY, Yu L, Shi W, Kang HX, Zhu ZB, Huang NS, Zhang XX, Chen ZC, Liu JJ, Yang ZF, Ning Y, Li AH. Genomic insight into balancing high yield, good quality, and blast resistance of japonica rice. Genome Biol, 2021, 22(1): 283.
doi: 10.1186/s13059-021-02488-8 pmid: 34615543 |
[77] | Jiang JF, Mou TM, Yu HH, Zhou FS. Molecular breeding of thermo-sensitive genic male sterile (TGMS) lines of rice for blast resistance using Pi2 gene. Rice (N Y), 2015, 8: 11. |
[78] |
Rasheed A, Wen W, Gao FM, Zhai SN, Jin H, Liu JD, Guo Q, Zhang YJ, Dreisigacker S, Xia XC, He ZH. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet, 2016, 129(10): 1843-1860.
doi: 10.1007/s00122-016-2743-x pmid: 27306516 |
[79] |
Pariasca-Tanaka J, Lorieux M, He CL, McCouch S, Thomson MJ, Wissuwa M. Development of a SNP genotyping panel for detecting polymorphisms in Oryza glaberrima/O.sativa interspecific crosses. Euphytica, 2015, 201(1): 67-78.
doi: 10.1007/s10681-014-1183-4 |
[80] | Sandhu N, Singh J, Singh G, Sethi M, Singh MP, Pruthi G, Raigar OP, Kaur R, Kaur R, Sarao PS, Lore JS, Singh UM, Dixit S, Sagare DB, Singh SP, Satturu V, Singh VK, Kumar A. Development and validation of a novel core set of KASP markers for the traits improving grain yield and adaptability of rice under direct-seeded cultivation conditions. Genomics, 2022, 114(2): 110269. |
[81] |
Yu HH, Xie WB, Li J, Zhou FS, Zhang QF. A whole- genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol J, 2014, 12(1): 28-37.
doi: 10.1111/pbi.2013.12.issue-1 |
[82] |
Chen HD, Xie WB, He H, Yu HH, Chen W, Li J, Yu RB, Yao Y, Zhang WH, He YQ, Tang XY, Zhou FS, Deng XW, Zhang QF. A high-density SNP genotyping array for rice biology and molecular breeding. Mol Plant, 2014, 7(3): 541-553.
doi: 10.1093/mp/sst135 pmid: 24121292 |
[83] |
Singh NS, Jayaswal PK, Panda K, Mandal P, Kumar V, Singh B, Mishra S, Singh Y, Singh R, Rai V, Gupta A, Raj Sharma T, Singh NK. Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Sci Rep, 2015, 5: 11600.
doi: 10.1038/srep11600 |
[84] |
Ellur RK, Khanna A, Yadav A, Pathania S, Rajashekara H, Singh VK, Gopala Krishnan S, Bhowmick PK, Nagarajan M, Vinod KK, Prakash G, Mondal KK, Singh NK, Vinod Prabhu K, Singh AK. Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding. Plant Sci, 2016, 242: 330-341.
doi: S0168-9452(15)30052-2 pmid: 26566849 |
[85] |
Kumar K, Sarao PS, Bhatia D, Neelam K, Kaur A, Mangat GS, Brar DS, Singh K.High-resolution genetic mapping of a novel brown planthopper resistance locus, Bph34 in Oryza sativa L. X Oryza nivara (Sharma & Shastry) derived interspecific F(2) population. Theor Appl Genet, 2018, 131(5): 1163-1171.
doi: 10.1007/s00122-018-3069-7 |
[86] |
Jia XQ, Zhang YD, Zhang QJ, Zhao QY, Traw MB, Wang L, Tian DC, Wang CL, Yang SH. High-resolution insight into recombination events at the SD1 locus in rice. Plant J, 2019, 97(4): 683-692.
doi: 10.1111/tpj.2019.97.issue-4 |
[87] |
Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu JZ, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M. Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci USA, 2011, 108(27): 11034-11039.
doi: 10.1073/pnas.1019490108 |
[88] |
Duan PG, Xu JS, Zeng DL, Zhang BL, Geng MF, Zhang GZ, Huang K, Huang LJ, Xu R, Ge S, Qian Q, Li YH. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Mol Plant, 2017, 10(5): 685-694.
doi: 10.1016/j.molp.2017.03.009 |
[89] |
Liu JF, Chen J, Zheng XM, Wu FQ, Lin QB, Heng YQ, Tian P, Cheng ZJ, Yu XW, Zhou KN, Zhang X, Guo XP, Wang JL, Wang HY, Wan JM. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants, 2017, 3: 17043.
doi: 10.1038/nplants.2017.43 |
[90] |
Bai XF, Huang Y, Hu Y, Liu HY, Zhang B, Smaczniak C, Hu G, Han ZM, Xing YZ. Duplication of an upstream silencer of FZP increases grain yield in rice. Nat Plants, 2017, 3(11): 885-893.
doi: 10.1038/s41477-017-0042-4 |
[91] |
Huang YY, Zhao SS, Fu YC, Sun HD, Ma X, Tan LB, Liu FX, Sun XY, Sun HY, Gu P, Xie DX, Sun CQ, Zhu ZF. Variation in the regulatory region of FZP causes increases in secondary inflorescence branching and grain yield in rice domestication. Plant J, 2018, 96(4): 716-733.
doi: 10.1111/tpj.2018.96.issue-4 |
[92] |
Wu Y, Wang Y, Mi XF, Shan JX, Li XM, Xu JL, Lin HX. The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet, 2016, 12(10): e1006386.
doi: 10.1371/journal.pgen.1006386 |
[93] |
Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R, Ebitani T, Ozaki H, Angeles ER, Hirasawa T, Matsuoka M. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun, 2010, 1: 132.
pmid: 21119645 |
[94] |
Li YB, Fan CC, Xing YZ, Jiang YH, Luo LJ, Sun L, Shao D, Xu CJ, Li XH, Xiao JH, He YQ, Zhang QF. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43(12): 1266-1269.
doi: 10.1038/ng.977 |
[95] |
Hu J, Wang YX, Fang YX, Zeng LJ, Xu J, Yu HP, Shi ZY, Pan JJ, Zhang D, Kang SJ, Zhu L, Dong GJ, Guo LB, Zeng DL, Zhang GH, Xie LH, Xiong GS, Li JY, Qian Q. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015, 8(10): 1455-1465.
doi: 10.1016/j.molp.2015.07.002 |
[96] |
Jiao YQ, Wang YH, Xue DW, Wang J, Yan MX, Liu GF, Dong GJ, Zeng DL, Lu ZF, Zhu XD, Qian Q, Li JY. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42(6): 541-544.
doi: 10.1038/ng.591 |
[97] |
Liu Q, Han RX, Wu K, Zhang JQ, Ye YF, Wang SS, Chen JF, Pan YJ, Li Q, Xu XP, Zhou JW, Tao DY, Wu YJ, Fu XD. G-protein betagamma subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun, 2018, 9(1): 852.
doi: 10.1038/s41467-018-03047-9 |
[98] |
Zhang HW, Si XM, Ji X, Fan R, Liu JX, Chen KL, Wang DW, Gao CX. Genome editing of upstream open reading frames enables translational control in plants. Nat Biotechnol, 2018, 36(9): 894-898.
doi: 10.1038/nbt.4202 pmid: 30080209 |
[99] | Xue CX, Qiu FT, Wang YX, Li BS, Zhao KT, Chen KL, Gao CX. Tuning plant phenotypes by precise, graded downregulation of gene expression. Nat Biotechnol, 2023. |
[100] |
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6): 1262-1278.
doi: S0092-8674(14)00604-7 pmid: 24906146 |
[101] |
Shen L, Hua YF, Fu YP, Li J, Liu Q, Jiao XZ, Xin GW, Wang JJ, Wang XC, Yan CJ, Wang KJ. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Sci China Life Sci, 2017, 60(5): 506-515.
doi: 10.1007/s11427-017-9008-8 pmid: 28349304 |
[102] |
Wang Y, Geng LZ, Yuan ML, Wei J, Jin C, Li M, Yu K, Zhang Y, Jin HB, Wang E, Chai ZJ, Fu XD, Li XG.Deletion of a target gene in indica rice via CRISPR/Cas9. Plant Cell Rep, 2017, 36(8): 1333-1343.
doi: 10.1007/s00299-017-2158-4 |
[103] |
Zong Y, Wang YP, Li C, Zhang R, Chen KL, Ran YD, Qiu JL, Wang DW, Gao CX. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol, 2017, 35(5): 438-440.
doi: 10.1038/nbt.3811 pmid: 28244994 |
[104] | Li C, Zong Y, Wang YP, Jin S, Zhang DB, Song QN, Zhang R, Gao CX. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol, 2018, 19(1): 59. |
[105] | Li MR, Li XX, Zhou ZJ, Wu PZ, Fang MC, Pan XP, Lin QP, Luo WB, Wu GJ, Li HQ. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci, 2016, 7: 377. |
[106] |
Huang HX, Ye YF, Song WW, Li Q, Han RX, Wu CC, Wang SX, Yu JP, Liu XY, Fu XD, Liu Q, Wu K. Modulating the C-terminus of DEP1 synergistically enhances grain quality and yield in rice. J Genet Genomics, 2022, 49(5): 506-509.
doi: 10.1016/j.jgg.2022.01.009 pmid: 35182790 |
[107] |
Zhou JP, Xin XH, He Y, Chen HQ, Li Q, Tang X, Zhong ZH, Deng KJ, Zheng XL, Akher SA, Cai GZ, Qi YP, Zhang Y. Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Rep, 2019, 38(4): 475-485.
doi: 10.1007/s00299-018-2340-3 pmid: 30159598 |
[108] |
Xu RF, Yang YC, Qin RY, Li H, Qiu CH, Li L, Wei PC, Yang JB. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J Genet Genomics, 2016, 43(8): 529-532.
doi: 10.1016/j.jgg.2016.07.003 pmid: 27543262 |
[109] | Tao YJ, Wang J, Yang X, Wang FQ, Li WQ, Jiang YJ, Chen ZH, Fan FJ, Zhu JP, Li X, Yang J. Rational design of grain size to improve rice yield and quality. Rice Sci, 2023, 30(1): 1-5. |
[110] |
Cui YT, Hu XM, Liang GH, Feng AH, Wang FM, Ruan S, Dong GJ, Shen L, Zhang B, Chen DD, Zhu L, Hu J, Lin YJ, Guo LB, Matsuoka M, Qian Q.Production of novel beneficial alleles of a rice yield-related QTL by CRISPR/Cas9. Plant Biotechnol J, 2020, 18(10): 1987-1989.
doi: 10.1111/pbi.v18.10 |
[111] |
Song XG, Meng XB, Guo HY, Cheng Q, Jing YH, Chen MJ, Liu GF, Wang B, Wang YH, Li JY, Yu H. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat Biotechnol, 2022, 40(9): 1403-1411.
doi: 10.1038/s41587-022-01281-7 pmid: 35449414 |
[112] |
Miao CB, Wang D, He RQ, Liu SK, Zhu JK. Mutations in MIR396e and MIR396f increase grain size and modulate shoot architecture in rice. Plant Biotechnol J, 2020, 18(2): 491-501.
doi: 10.1111/pbi.v18.2 |
[113] |
Nawaz G, Usman B, Zhao N, Han Y, Li ZH, Wang X, Liu YG, Li RB. CRISPR/Cas9 directed mutagenesis of OsGA20ox2 in high yielding basmati rice (Oryza sativa L.)line and comparative proteome profiling of unveiled changes triggered by mutations. Int J Mol Sci, 2020, 21(17): 6170.
doi: 10.3390/ijms21176170 |
[114] | Biswas S, Tian JQ, Li R, Chen XF, Luo ZJ, Chen MJ, Zhao XX, Zhang DB, Persson S, Yuan Z, Shi JX. Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant molecular breeding. J Genet Genomics, 2020, 47(5): 273-280. |
[115] |
Cui Y, Zhu MM, Xu ZJ, Xu Q. Assessment of the effect of ten heading time genes on reproductive transition and yield components in rice using a CRISPR/Cas9 system. Theor Appl Genet, 2019, 132(6): 1887-1896.
doi: 10.1007/s00122-019-03324-1 pmid: 30887096 |
[116] | Li B, Du X, Fei YY, Wang FQ, Xu Y, Li X, Li WQ, Chen ZH, Fan FJ, Wang J, Tao YJ, Jiang YJ, Zhu QH, Yang J.Efficient breeding of early-maturing rice cultivar by editing PHYC via CRISPR/Cas9. Rice (N Y), 2021, 14(1): 86. |
[117] | Liu XX, Liu HL, Zhang YY, He ML, Li RT, Meng W, Wang ZY, Li XF, Bu QY. Fine-tuning flowering time via genome editing of upstream open reading frames of heading date 2 in rice. Rice (N Y), 2021, 14(1): 59. |
[118] |
Zhang JS, Zhang H, Botella JR, Zhu JK. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J Integr Plant Biol, 2018, 60(5): 369-375.
doi: 10.1111/jipb.v60.5 |
[119] |
Zeng DC, Liu TL, Ma XL, Wang B, Zheng ZY, Zhang YL, Xie XR, Yang BW, Zhao Z, Zhu QL, Liu YG. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice. Plant Biotechnol J, 2020, 18(12): 2385-2387.
doi: 10.1111/pbi.v18.12 |
[120] |
Huang LC, Li QF, Zhang CQ, Chu R, Gu ZW, Tan HY, Zhao DS, Fan XL, Liu QQ. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotechnol J, 2020, 18(11): 2164-2166.
doi: 10.1111/pbi.v18.11 |
[121] | Liu XD, Ding Q, Wang WS, Pan YL, Tan C, Qiu YB, Chen Y, Li HJ, Li YL, Ye NZ, Xu N, Wu X, Ye RJ, Liu JF, Ma CL. Targeted deletion of the first intron of the Wx(b) allele via CRISPR/Cas9 significantly increases grain amylose content in rice. Rice (N Y), 2022, 15(1): 1. |
[122] |
Xu Y, Lin QP, Li XF, Wang FQ, Chen ZH, Wang J, Li WQ, Fan FJ, Tao YJ, Jiang YJ, Wei XD, Zhang R, Zhu QH, Bu QY, Yang J, Gao CX. Fine-tuning the amylose content of rice by precise base editing of the Wx gene. Plant Biotechnol J, 2021, 19(1): 11-13.
doi: 10.1111/pbi.v19.1 |
[123] | Biswas S, Ibarra O, Shaphek M, Molina-Risco M, Faion-Molina M, Bellinatti-Della Gracia M, Thomson MJ, Septiningsih EM. Increasing the level of resistant starch in 'Presidio' rice through multiplex CRISPR-Cas9 gene editing of starch branching enzyme genes. Plant Genome, 2022: e20225. |
[124] |
Yang YH, Shen ZY, Li YG, Xu CD, Xia H, Zhuang H, Sun SY, Guo M, Yan CJ. Rapid improvement of rice eating and cooking quality through gene editing toward glutelin as target. J Integr Plant Biol, 2022, 64(10): 1860-1865.
doi: 10.1111/jipb.13334 |
[125] |
Tang YC, Abdelrahman M, Li JB, Wang FJ, Ji ZY, Qi HX, Wang CL, Zhao KJ. CRISPR/Cas9 induces exon skipping that facilitates development of fragrant rice. Plant Biotechnol J, 2021, 19(4): 642-644.
doi: 10.1111/pbi.13514 pmid: 33217139 |
[126] |
Hui SZ, Li HJ, Mawia AM, Zhou L, Cai JY, Ahmad S, Lai CK, Wang JX, Jiao GA, Xie LH, Shao GN, Sheng ZH, Tang SQ, Wang JL, Wei XJ, Hu SK, Hu PS. Production of aromatic three-line hybrid rice using novel alleles of BADH2. Plant Biotechnol J, 2022, 20(1): 59-74.
doi: 10.1111/pbi.v20.1 |
[127] | Usman B, Nawaz G, Zhao N, Liu YG, Li RB. Generation of high yielding and fragrant rice (Oryza sativa L.)lines by CRISPR/Cas9 targeted mutagenesis of three homoeologs of cytochrome P450 gene family and OsBADH2 and transcriptome and proteome profiling of revealed changes triggered by mutations. Plants (Basel), 2020, 9(6): 788. |
[128] |
Tian YH, Zhou Y, Gao GJ, Zhang QL, Li YH, Lou GM, He YQ. Creation of two-line fragrant glutinous hybrid rice by editing the Wx and OsBADH2 genes via the CRISPR/Cas9 system. Int J Mol Sci, 2023, 24(1): 849.
doi: 10.3390/ijms24010849 |
[129] |
Oliva R, Ji CH, Atienza-Grande G, Huguet-Tapia JC, Perez-Quintero A, Li T, Eom JS, Li CH, Nguyen H, Liu B, Auguy F, Sciallano C, Luu VT, Dossa GS, Cunnac S, Schmidt SM, Slamet-Loedin IH, Vera Cruz C, Szurek B, Frommer WB, White FF, Yang B. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol, 2019, 37(11): 1344-1350.
doi: 10.1038/s41587-019-0267-z pmid: 31659337 |
[130] |
Eom JS, Luo DP, Atienza-Grande G, Yang J, Ji CH, Thi Luu V, Huguet-Tapia JC, Char SN, Liu B, Nguyen H, Schmidt SM, Szurek B, Vera Cruz C, White FF, Oliva R, Yang B, Frommer WB. Diagnostic kit for rice blight resistance. Nat Biotechnol, 2019, 37(11): 1372-1379.
doi: 10.1038/s41587-019-0268-y |
[131] |
Xu XM, Xu ZY, Li ZY, Zakria M, Zou LF, Chen GY. Increasing resistance to bacterial leaf streak in rice by editing the promoter of susceptibility gene OsSULRT3;6. Plant Biotechnol J, 2021, 19(6): 1101-1103.
doi: 10.1111/pbi.v19.6 |
[132] |
Zhou YB, Xu SC, Jiang N, Zhao XH, Bai ZN, Liu JL, Yao W, Tang QY, Xiao G, Lv C, Wang K, Hu XC, Tan JJ, Yang YZ.Engineering of rice varieties with enhanced resistances to both blast and bacterial blight diseases via CRISPR/Cas9. Plant Biotechnol J, 2022, 20(5): 876-885.
doi: 10.1111/pbi.v20.5 |
[133] |
Zhou H, Zhou M, Yang YZ, Li J, Zhu LY, Jiang DG, Dong JF, Liu QJ, Gu LF, Zhou LY, Feng MJ, Qin P, Hu XC, Song CL, Shi JF, Song XW, Ni ED, Wu XJ, Deng QY, Liu ZL, Chen MS, Liu YG, Cao XF, Zhuang CX.RNase Z(S1) processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun, 2014, 5: 4884.
doi: 10.1038/ncomms5884 pmid: 25208476 |
[134] |
Zhou H, He M, Li J, Chen L, Huang ZF, Zheng SY, Zhu LY, Ni ED, Jiang DG, Zhao BR, Zhuang CX. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci Rep, 2016, 6: 37395.
doi: 10.1038/srep37395 pmid: 27874087 |
[135] |
Miao CB, Xiao LH, Hua K, Zou CS, Zhao Y, Bressan RA, Zhu JK. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc Natl Acad Sci USA, 2018, 115(23): 6058-6063.
doi: 10.1073/pnas.1804774115 pmid: 29784797 |
[136] |
Zeng YF, Wen JY, Zhao WB, Wang Q, Huang WC. Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR-Cas9 system. Front Plant Sci, 2019, 10: 1663.
doi: 10.3389/fpls.2019.01663 |
[137] |
Zhang R, Chen S, Meng XB, Chai ZZ, Wang DL, Yuan YG, Chen KL, Jiang LJ, Li JY, Gao CX. Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing. Sci China Life Sci, 2021, 64(10): 1624-1633.
doi: 10.1007/s11427-020-1800-5 pmid: 33165814 |
[138] |
Zhu XY, Gou YJ, Heng YQ, Ding WY, Li YJ, Zhou DG, Li XQ, Liang CR, Wu CY, Wang HY, Shen RX. Targeted manipulation of grain shape genes effectively improves outcrossing rate and hybrid seed production in rice. Plant Biotechnol J, 2023, 21(2): 381-390.
doi: 10.1111/pbi.v21.2 |
[139] |
Shen L, Wang C, Fu YP, Wang JJ, Liu Q, Zhang XM, Yan CJ, Qian Q, Wang KJ. QTL editing confers opposing yield performance in different rice varieties. J Integr Plant Biol, 2018, 60(2): 89-93.
doi: 10.1111/jipb.12501 |
[140] |
Huang XZ, Qian Q, Liu ZB, Sun HY, He SY, Luo D, Xia GM, Chu CC, Li JY, Fu XD. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009, 41(4): 494-497.
doi: 10.1038/ng.352 |
[141] |
Sun SY, Wang L, Mao HL, Shao L, Li XH, Xiao JH, Ouyang YD, Zhang QF. A G-protein pathway determines grain size in rice. Nat Commun, 2018, 9(1): 851.
doi: 10.1038/s41467-018-03141-y pmid: 29487318 |
[142] |
Wang BB, Wang HY. IPA1: a new "green revolution" gene? Mol Plant, 2017, 10(6): 779-781.
doi: S1674-2052(17)30132-6 pmid: 28478096 |
[143] |
Ma B, Zhang L, He ZH. Understanding the regulation of cereal grain filling: the way forward. J Integr Plant Biol, 2023, 65(2): 526-547.
doi: 10.1111/jipb.13456 |
[1] | 刘向东, 吴锦文, 陆紫君, Muhammad Qasim Shahid. 同源四倍体水稻:低育性机理、改良与育种展望[J]. 遗传, 2023, 45(9): 781-792. |
[2] | 郝小花, 胡爽, 赵丹, 田连福, 谢子靖, 吴莎, 胡文俐, 雷晗, 李东屏. OsGA3ox通过合成不同活性GA调控水稻育性及株高[J]. 遗传, 2023, 45(9): 845-855. |
[3] | 郑镇武, 赵宏源, 梁晓娅, 王一珺, 王驰航, 巩高洋, 黄金燕, 张桂权, 王少奎, 刘祖培. 水稻qGL3.4调控籽粒大小与株型[J]. 遗传, 2023, 45(9): 835-844. |
[4] | 陈明江, 刘贵富, 肖叶青, 余泓, 李家洋. 中科发早粳1号分子设计育种[J]. 遗传, 2023, 45(9): 829-834. |
[5] | 王秉政, 张超, 张佳丽, 孙锦. 利用单转录本表达Cas9和sgRNA条件性编辑果蝇基因组[J]. 遗传, 2023, 45(7): 593-601. |
[6] | 刘永强, 李威威, 刘昕禹, 储成才. 水稻分蘖氮响应调控机理研究进展[J]. 遗传, 2023, 45(5): 367-378. |
[7] | 吴仲胜, 高誉, 杜勇涛, 党颂, 何康敏. CRISPR-Cas9基因编辑技术对细胞内源蛋白进行荧光标记的实验操作[J]. 遗传, 2023, 45(2): 165-175. |
[8] | 刘梅珍, 王立人, 李咏梅, 马雪云, 韩红辉, 李大力. 利用CRISPR/Cas9技术构建基因编辑大鼠模型[J]. 遗传, 2023, 45(1): 78-87. |
[9] | 张潇筠, 徐坤, 沈俊岑, 穆璐, 钱泓润, 崔婕妤, 马宝霞, 陈知龙, 张智英, 魏泽辉. 一种新型提高HDR效率的CRISPR/Cas9-Gal4BD供体适配基因编辑系统[J]. 遗传, 2022, 44(8): 708-719. |
[10] | 韩玉婷, 许博文, 李羽童, 卢心怡, 董习之, 邱雨浩, 车沁耘, 朱芮葆, 郑丽, 李孝宸, 司绪, 倪建泉. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-14. |
[11] | 李姗, 黄允智, 刘学英, 傅向东. 作物氮肥利用效率遗传改良研究进展[J]. 遗传, 2021, 43(7): 629-641. |
[12] | 王海涛, 李亭亭, 黄勋, 马润林, 刘秋月. 遗传修饰技术在绵羊分子设计育种中的应用[J]. 遗传, 2021, 43(6): 580-600. |
[13] | 张昌泉, 冯琳皓, 顾铭洪, 刘巧泉. 江苏省水稻品质性状遗传和重要基因克隆研究进展[J]. 遗传, 2021, 43(5): 425-441. |
[14] | 彭定威, 李瑞强, 曾武, 王敏, 石翾, 曾检华, 刘小红, 陈瑶生, 何祖勇. 编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J]. 遗传, 2021, 43(3): 261-270. |
[15] | 代航, 李延, 刘树春, 林磊, 吴娟燕, 张志杰, 彭崎春, 李楠, 张向前. 类伸展蛋白OsPEX1对水稻花粉育性的影响[J]. 遗传, 2021, 43(3): 271-279. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
www.chinagene.cn
备案号:京ICP备09063187号-4
总访问:,今日访问:,当前在线: