[1] Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol , 1987, 169(12): 5429-5433. [2] Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science , 2014, 346(6213): 1258096. [3] Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell , 2014, 157(6): 1262-1278. [4] Wang HY, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell , 2013, 153(4): 910-918. [5] Yang H, Wang HY, Shivalila CS, Cheng AW, Shi LY, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell , 2013, 154(6): 1370-1379. [6] Zhou XQ, Xin JG, Fan NN, Zou QJ, Huang J, Ouyang Z, Zhao Y, Zhao BT, Liu ZM, Lai SS, Yi XL, Guo L, Esteban MA, Zeng YZ, Yang HQ, Lai LX. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci , 2015, 72(6): 1175-1184. [7] Wan HF, Feng CJ, Teng F, Yang SH, Hu BY, Niu YY, Xiang AP, Fang WZ, Ji WZ, Li W, Zhao XY, Zhou Q. One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Res , 2015, 25(2): 258-261. [8] Zhao P, Zhang Z, Ke HM, Yue YR, Xue D. Oligonucleotide-based targeted gene editing in C. elegans via the CRISPR/Cas9 system. Cell Res , 2014, 24(2): 247-250. [9] Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, Schmid B. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development , 2013, 140(24): 4982-4987. [10] Hwang WY, Fu YF, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JRJ, Joung JK. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol , 2013, 31(3): 227-229. [11] Shan QW, Wang YP, Li J, Zhang Y, Chen KL, Liang Z, Zhang K, Liu JX, Xi JZJ, Qiu JL, Gao CX. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol , 2013, 31(8): 686-688. [12] Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature , 2015, 517(7536): 583-588. [13] Bikard D, Jiang WY, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res , 2013, 41(15): 7429-7437. [14] Liu T, Li YJ, Wang XD, Ye Q, Li H, Liang YX, She QX, Peng N. Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition. Nucleic Acids Res , 2015, 43(2): 1044-1055. [15] Zhou JW, Xu QB, Yao J, Yu SM, Cao SZ. CRISPR/Cas9 genome editing technique and its application in site-directed genome modification of animals. Hereditas (Beijing) , 2015, 37(10): 1011-1020. 周金伟, 徐绮嫔, 姚婧, 余树民, 曹随忠. CRISPR/Cas9基因组编辑技术及其在动物基因组定点修饰中的应用. 遗传, 2015, 37(10): 1011-1020. [16] Kraft K, Geuer S, Will AJ, Chan WL, Paliou C, Borschiwer M, Harabula I, Wittler L, Franke M, Ibrahim DM, Kragesteen BK, Spielmann M, Mundlos S, Lupiáñez DG, Andrey G. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice. Cell Rep , 2015, 10(5): 833-839, doi:10.1016/ j.celrep. 2015.01.016. [17] Stell A, Biserni A, Della Torre S, Rando G, Ramachandran B, Ottobrini L, Lucignani G, Maggi A, Ciana P. Cancer modeling: modern imaging applications in the generation of novel animal model systems to study cancer progression and therapy. Int J Biochem Cell Biol , 2007, 39(7-8): 1288-1296. [18] van Dyke T, Jacks T. Cancer modeling in the modern era: progress and challenges. Cell , 2002, 108(2): 135-144. [19] Xue W, Chen SD, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai WX, Yang G, Bronson R, Crowley DG, Zhang F, Anderson DG, Sharp PA, Jacks T. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature , 2014, 514(7522): 380-384. [20] Platt RJ, Chen SD, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng GP, Sharp PA, Zhang F. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell , 2014, 159(2): 440-455. [21] Ji HB, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, Torrice C, Wu MC, Shimamura T, Perera SA, Liang MC, Cai DP, Naumov GN, Bao L, Contreras CM, Li DN, Chen L, Krishnamurthy J, Koivunen J, Chirieac LR, Padera RF, Bronson RT, Lindeman NI, Christiani DC, Lin XH, Shapiro GI, Jänne PA, Johnson BE, Meyerson M, Kwiatkowski DJ, Castrillon DH, Bardeesy N, Sharpless NE, Wong KK. LKB1 modulates lung cancer differentiation and metastasis. Nature , 2007, 448(7155): 807-810. [22] Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med , 2015, 21(3): 256-262. [23] The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature , 2012, 487(7407): 330-337. [24] Heckl D, Kowalczyk MS, Yudovich D, Belizaire R, Puram RV, McConkey ME, Thielke A, Aster JC, Regev A, Ebert BL. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol , 2014, 32(9): 941-946. [25] Sánchez-Rivera FJ, Papagiannakopoulos T, Romero R, Tammela T, Bauer MR, Bhutkar A, Joshi NS, Subbaraj L, Bronson RT, Xue W, Jacks T. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature , 2014, 516(7531): 428-431. [26] Chen SD, Sanjana NE, Zheng KJ, Shalem O, Lee K, Shi X, Scott DA, Song J, Pan JQ, Weissleder R, Lee H, Zhang F, Sharp PA. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell , 2015, 160(6): 1246-1260. [27] Chen SD, Xue Y, Wu XB, Le C, Bhutkar A, Bell EL, Zhang F, Langer R, Sharp PA. Global microRNA depletion suppresses tumor angiogenesis. Genes Dev , 2014, 28(10): 1054-1067. [28] Tsai AG, Lieber MR. Mechanisms of chromosomal rearrangement in the human genome. BMC Genomics , 2010, 11(Suppl.1): S1. [29] Holland AJ, Cleveland DW. Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat Med , 2012, 18(11): 1630-1638. [30] Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC, Ogrodowski P, Crippa A, Rekhtman N, de Stanchina E, Lowe SW, Ventura A. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature , 2014, 516(7531): 423-427. [31] Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara SI, Watanabe H, Kurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburatani H, Niki T, Sohara Y, Sugiyama Y, Mano H. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature , 2007, 448(7153): 561-566. [32] Taki T, Taniwaki M. Chromosomal translocations in cancer and their relevance for therapy. Curr Opin Oncol , 2006, 18(1): 62-68. [33] Torres R, Martin MC, Garcia A, Cigudosa JC, Ramirez JC, Rodriguez-Perales S. Engineering human tumour- associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat Commun , 2014, 5: 3964. [34] Wu YX, Liang D, Wang YH, Bai MZ, Tang W, Bao SM, Yan ZQ, Li DS, Li JS. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell , 2013, 13(6): 659-662. [35] Long CZ, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science , 2014, 345(6201): 1184-1188. [36] Aubrey BJ, Kelly GL, Kueh AJ, Brennan MS, O'Connor L, Milla L, Wilcox S, Tai L, Strasser A, Herold MJ. An inducible lentiviral guide RNA platform enables the identification of tumor-essential genes and tumor- promoting mutations in vivo . Cell Rep , 2015, 10(8): 1422-1432. [37] Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science , 2014, 343(6166): 84-87. [38] Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science , 2014, 343(6166): 80-84. [39] Zhou YX, Zhu SY, Cai CZ, Yuan PF, Li CM, Huang YY, Wei WS. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature , 2014, 509(7501): 487-491. [40] Shi JW, Wang E, Milazzo JP, Wang ZH, Kinney JB, Vakoc CR. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol , 2015, 33(6): 661-667. [41] Malina A, Mills JR, Cencic R, Yan YF, Fraser J, Schippers LM, Paquet M, Dostie J, Pelletier J. Repurposing CRISPR/Cas9 for in situ functional assays. Genes Dev , 2013, 27(23): 2602-2614. [42] Nihongaki Y, Yamamoto S, Kawano F, Suzuki H, Sato M. CRISPR-Cas9-based photoactivatable transcription system. Chem Biol , 2015, 22(2): 169-174. [43] Essletzbichler P, Konopka T, Santoro F, Chen D, Gapp BV, Kralovics R, Brummelkamp TR, Nijman SMB, Bürckstummer T. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Res , 2014, 24(12): 2059-2065. [44] Han JX, Zhang J, Chen L, Shen B, Zhou JK, Hu B, Du YN, Tate PH, Huang XX, Zhang WS. Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biol , 2014, 11(7): 829-835. [45] Ho TT, Zhou NJ, Huang JG, Koirala P, Xu M, Fung R, Wu FT, Mo YY. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res , 2015, 43(3): e17. [46] Ablain J, Durand EM, Yang S, Zhou Y, Zon LI. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell , 2015, 32(6): 756-764. [47] Swiech L, Heidenreich M, Banerjee A, Habib N, Li YQ, Trombetta J, Sur M, Zhang F. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol , 2015, 33(1): 102-106. [48] Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell , 2013, 154(6): 1380-1389. [49] Shen B, Zhang WS, Zhang J, Zhou JK, Wang JY, Chen L, Wang L, Hodgkins A, Iyer V, Huang XX, Skarnes WC. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods , 2014, 11(4): 399-402. [50] Kourtidis A, Ngok SP, Pulimeno P, Feathers RW, Carpio LR, Baker TR, Carr JM, Yan IK, Borges S, Perez EA, Storz P, Copland JA, Patel T, Thompson EA, Citi S, Anastasiadis PZ. Distinct E-cadherin-based complexes regulate cell behaviour through miRNA processing or Src and p120 catenin activity. Nat Cell Biol , 2015, 17(9): 1145-1157. [51] Bai M, Li Q, Shao YJ, Huang YH, Li DL, Ma YL. Generation of site-specific mutant mice using the CRISPR/Cas9 system. Hereditas(Beijing) , 2015, 37(10): 1029-1035. 白敏, 李崎, 邵艳姣, 黄元华, 李大力, 马燕琳. 利用CRISPR/Cas9技术构建定点突变小鼠品系. 遗传, 2015, 37(10): 1029-1035. [52] Qu L, Li HS, Jiang YH, Dong CS. The molecular mechanism of CRISPR/Cas9 system and its application in gene therapy of human diseases. Hereditas(Beijing) , 2015, 37(10): 974-982. 璩良, 李华善, 姜运涵, 董春升. CRISPR/Cas9系统的分子机制及其在人类疾病基因治疗中的应用. 遗传, 2015, 37(10): 974-982. [53] Yin LJ, Hu SQ, Guo F. The application of CRISPR-Cas9 gene editing technology in viral infection diseases. Hereditas(Beijing) , 2015, 37(5): 412-418. 殷利眷, 胡斯奇, 郭斐. CRISPR-Cas9基因编辑技术在病毒感染疾病治疗中的应用. 遗传, 2015, 37(5): 412-418. |